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PROJECT'S GOAL

Introduction

Compared to land vehicles, helicopters are very interesting because they can move freely in
the 3 dimensions, and with fewer constraints than airplanes: for example, a helicopter can
hover stationary.
Moving in 3 dimensions greatly helps autonomous robots i.e. they are less affected by the
relief of the ground, they are able to avoid obstacles more easily, they have a better perception
of their environment and so on.

Mobile helicopter robots are a very challenging concept, but unfortunately, unlike airplanes,
helicopters are naturally unstable in the air. This well-known quote from Harry Reasoner tells
everything:

"The thing is, helicopters are different from planes. An airplane by its very nature wants to fly
and, if not interfered with too strongly by unusual events or by a deliberately incompetent
pilot, it will fly. A helicopter does not want to fly. It is maintained in the air by a variety of
forces and controls working in opposition to each other and, if there is any disturbance in this
delicate balance, the helicopter stops flying; immediately and disastrously. There is no such
thing as a gliding helicopter."

The first big step in building an autonomous helicopter is obviously to develop a flying
machine that is able to hover without human intervention.
Hence, the goal of this project is to build a computer-based control system around a
commercially available indoor / outdoor model helicopter: the Keyence Engager GSIII. The
resulting system will be used as a starting point for future autonomous helicopter projects at
the ASL.

Objectives for this project

ß Evaluate the Engager GSIII (behavior when flying, maximal payload, etc…),
ß Find which sensors are required for autonomous hovering,
ß Choose the sensors and microcontroller to use,
ß Replace the radio link with a RS232 wired link,
ß Design and build a PCB to host the sensors, the microcontrollers and the motor amplifiers,
ß Develop PC software to read the sensor values from the PCB and set the motor speeds.
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KEYENCE ENGAGER GSIII MODEL HELICOPTER

The Engager GSIII is a commercially available small radio-controlled helicopter produced
by Keyence1. Since it is electrically powered and can be used indoor and outdoor, it is a well-
suited model helicopter for this project.

Overview

The Engager GSIII is a four-rotor heads model
helicopter that uses electric motors. It is small,
light, and relatively quiet – well, compared to
model helicopters with fuel engines. The rotor
heads do not have any pitch or collective control.
With standard Ni-Cd batteries, the Engager
GSIII is able to fly up to a few minutes.
An on-board PCB with angular velocity sensors
and a microcontroller drives the motors and
helps the pilot controlling the machine.

Note: refer to annex E for more information regarding the PCB itself.

First impressions

The Engager GSIII definitely looks like a cheap toy: fragile polystyrene fuselage and blades,
simple motor gears, bad motor fixations… Fortunately, once you know it better, it appears to
have a very smart design: it's quite light, built with very few pieces, and replacing blades is
easy.

Although I do have some experience in piloting model helicopters, controlling the Engager
GSIII was far from easy. Since it is very light, this helicopter has very little inertia, and is
therefore quite unstable and sensitive to turbulences.
After a few flights, I was however able to practice hovering, translation and rotation. Intense
concentration was still required: since the blades are made of polystyrene, they bent a lot
when producing the thrust necessary to compensate for the helicopter's weight. When bent,
their lift force is not very good, and if the helicopter tilts too much, it will immediately stall.

Measurements have shown that the Engager GSIII may sink up to 19A at 8V DC when the
four motors are actively running.
The helicopter weights approximately 350g and its maximal payload is about 90g (including
the weight of the power cables and of the protection cross2).

                                                  
1 Web page: http://www.keyence.co.jp/hobby/english/saucer.html
2 We fixed a carbon-built cross under the fuselage to protect the blades.
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Dynamic behavior

A four-rotors structure presents several advantages:
ß increased payload: since the thrust of a rotary wing is proportional to the square root of its

area, several rotor disks mean more thrust, and consequently, more payload. However, it's
true that multiple rotors also mean losses due to interaction of the air underneath.

ß no need for adjustable pitch / collective rotor heads to control movement: this simplifies a
lot the helicopter's mechanic and reduces its weight.

ß a larger time-constant: according to a draft whitepaper of the HoverBot project [1], "the
distributed weight of the 4 rotor heads increases the moment of inertial and thereby the
time-constant." Increasing the time-constant is a very important factor for model
helicopters, because it's their small size that makes them so difficult to stabilize.

We can also point out two disadvantages:
ß four rotors generate intense turbulences, especially when the helicopter is close to the

ground – consequently, hovering at low altitude is very difficult. The only advantage of
flying low is less power required to hover because of the "in ground effect"1.

ß controlling the rotor thrust by adjusting the motor power is not an efficient means (motors
do not respond quickly), while adjusting the rotor blades pitch has an almost-immediate
effect.

Because of the induced moments2 generated by the rotors, it is necessary that 2 opposite
rotors turn clockwise while the 2 others turn counter-clockwise. If all rotors generate the same
amount of induce moment, the sum of all induced moments is null, which prevents any
horizontal rotation.

Since the four electric motors are connected to fixed-pitch rotor heads, helicopter movement
is achieved by adjusting motor speeds:
ß Collectively increasing or decreasing the power to all 4 motors easily controls up / down

motion. Since all rotors turn at the same speed, there is no horizontal rotation.
ß Horizontal rotation is less intuitive and is created by making the total induced moment

non-null: if the counter-clockwise rotors increase their rotational speed, the resultant
induced moment will cause the Engager GSIII to turn counter-clockwise. At the same
time, clockwise rotors should decrease rotational speed so that the global lift force
remains the same and altitude is maintained. In this case, all rotor thrusts are strictly
vertical, therefore the helicopter remains horizontal and no translation occurs.

ß To translate laterally or longitudinally, the rotational speed of the rotor in the wanted
direction must be decreased. This will roll the helicopter and it will start gliding in the
desired direction. Simultaneously, the opposite rotor should turn faster so that the total
induced moment of these 2 rotors does not change, and the helicopter does not rotate. At
this time, the helicopter being no more horizontal, drag forces appear, lift forces are
reduced and the helicopter starts losing altitude. To compensate, it's necessary to
collectively increase the power of all 4 motors.

                                                  
1 In ground effect occurs when hovering less than one rotor diameter above the ground: the airflow interferes
with the ground and the lift force increases.
2 The reactive force of the air against the rotor causes a reactive moment, in the direction opposite to the rotation
of the rotor. Its amount essentially depends on the rotor rotational speed.
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These graphics show the rotation speed needed on each motor to achieve some typical
movements (a bigger arrow means a faster rotation speed):

Rotate left Rotate right

Going up Move right
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CONTROL SYSTEM DESIGN

This section briefly resumes the steps we accomplished during the system's design.

Control system overview

First, we needed to choose between an on-board controller and a remote controller on a PC
computer. Working on a remote PC controller presents several advantages, e.g. reduced
development time, easier debugging, the possibility to draw graphics with the sensors values,
etc. On the other hand, it increases latency and may create timing inaccuracies.
We eventually decided to build a PC-based controller system to ease development of future
controllers – when the controller code is done, it may be rewritten for an on-board
microcontroller anyway.

Then, we defined the requested information to stabilize the helicopter, whereas we did not
care about translation at this time: the goal is to maintain the engine horizontal. Position
control (and true hovering) is left to a future improved version of the control system.
Stabilizing the helicopter requires information about its angular orientation and angular
velocity along the 3 axes.

Microcontroller

PWM Amplifiers

Controller Software

Angular Velocity Sensors

Angular Orientation
Sensor

User Interface

PC Computer Model Helicopter

4 Motors Speeds

As said earlier, model helicopters are especially unstable because of their small time-constant,
as they are small, light, and they lack damping when flying. Consequently, our controller
needs a high bandwidth: we defined a targeted frequency of 50Hz1.

To minimize the development time, we decided to re-use partially the original PCB of the
Engager GSIII: we would keep the power unit (PWM motor drivers, 5V and 10V DC power
sources), while replacing the control unit with a new one (refer to annex E for more
information regarding the original PCB). This approach is better than trying to reverse-
engineering the control unit and "hack" it: eventually, we have a PCB that we perfectly know
and that can be easily upgraded, or even repaired if anything goes wrong.

                                                  
1 This value is a correlation between PC timing precision, sensor bandwidths… and ASL people experience!
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Microcontroller and sensors choice

Re-designing the control unit is essentially about choosing the right set of sensors and the best
microcontroller:

To measure angular velocity, we chose the Murata Gyrostar ENC-05 sensors (also called
"gyroscopes"), which output an analog signal proportional to the rotational speed on its main
axis. Therefore, one sensor is needed per axis.
To measure the angular orientation (or "tilting"), we selected the TCM2-50 made by Precision
Navigation, Inc. It outputs the compass, roll and pitch values through a standard RS232
connection.

Note: refer to the further sections "Angular orientation measurement" and "Angular
velocity measurement" for detailed information regarding these sensors.

The choice of the microcontroller was more difficult since it has to meet several minimal
requirements:
ß 4 A/D channels to connect the 3 gyroscopes and possibly an altitude sensor,
ß 4 PWM outputs to drive the PWM amplifiers that power the motors,
ß 2 USARTs for TCM2 and PC connections,
ß 1 SPI to connect I2C extension modules.

We were able to find only two microcontrollers that fit our special needs, but unfortunately
none of them was available for sale at that time:

Microcontroller name A/D
channels

PWM
outputs

USART
units

SPI
units

Clock
(MHz)

Availability

Atmel ATmega641 8 6+2 2 1 0-16 Q3 2002
Microchip PIC18F66202 12 5 2 1 40 Q4-2002

Other possibilities have been evaluated like using a K-Team Kameleon board3 or an Ubicom
SX microcontroller4. The Kameleon allowed only minimal control over the generated PWM
signals while the SX microcontroller, which implements PWMs, USARTs and SPIs as
software modules (Virtual Peripherals), did not have enough processing power to handle all
the requested tasks.

We eventually decided to use Microchip PICs 16F876: they run up to 20MHz and have 2
10bits PWM outputs, 5 10bits A/D channels, 1 USART and 1 SPI. Furthermore, they are
extensively used at the ASL and the development kits are already available.
By using two PIC 16F876 that communicate on the I2C bus, it is possible to meet the initial
requirements.

                                                  
1 Web page: http://www.atmel.com/atmel/products/prod199.htm
2 Web: http://www.microchip.com/1010/pline/picmicro/category/embctrl/32kbytes/devices/18f6620/index.htm
3 Web page: http://www.k-team.com/boards/kameleon/index.html
4 Web page: http://www.ubicom.com/products/sx/sx.html
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System operation

One PIC, defined as the "Master PIC", handles communication with the PC, control 2 motors
and reads the gyroscopes values through its A/D converters. It acts as a master on the I2C bus
to which the second PIC is connected. This "Slave PIC" receives the measures from the
TCM2, forwards them to the Master PIC, and controls the 2 other motors.

Asks for
Sensors Values

Receives Request
in RS232 Interrupt

Waits for
RS232 Data

Reads the 3 Gyroscopes
on the ADC Channels

Asks for TCM2
Measures

Receives Request
in I2C Interrupt

Returns Latest
TCM2 Measures

Receive TCM2
Measures

Returns all
Sensor Values

Receives
Sensor Values

Computes New
Motor Speeds

Sends Motor
Speeds

Receives Values
in RS232 Interrupt

Forwards Values

Update Motor
Speeds (1 & 2)

Waits for Next
Cycle (50Hz)

Runs Main Task

Runs Main Task

Runs Main Task

PC Controller Master PIC Slave PIC

Runs Main Task

Receives Values
in I2C Interrupt

Update Motor
Speeds (3 & 4)

Note: annex B outlines the PIC's communication protocol, while the PIC's source code is
available as an annex to this report.
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Because the TCM2 has a
latency way bigger than the
controller's cycle time (see
section "Angular position
measurements"), it has to run
a s y n c h r o n o u s l y  i n
"continuous sampling" mode.
The TCM2 actually sends its
measures at 40Hz to the Slave
PIC that buffers the latest
values. These are sent to the
Master PIC when then PC
controller requests the sensor
values.

PCB design notes

ß Each PIC's hardware interrupt pin is connected to an IO pin of the other PIC to allow
cross-interrupts generations for synchronization purposes if required.

ß Each PIC has its own programming connector and reset button, along with a LED that can
be used for any purpose e.g. informing the user that the PIC is running correctly.

ß Since each PIC has its own crystal, they might not run at the exact same frequency.
ß To allow future extensions, remaining pins of both PICs are wired to side connectors on

the PCB, and the I2C bus leads to an extension connector.
ß To remove electrical noise, decoupling capacitors are placed closed to each component's

supply voltage track.

Note: PCB complete schematic is available as an annex to this report.

Receives and
Buffers Data

Parses and
Decodes Data

Infinite loop
Waits for RS232
Data from TCM2

Master PIC Main Task Slave PIC Main Task

Update Buffered
Sensor values
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ANGULAR ORIENTATION MEASUREMENTS

Keeping the helicopter horizontal requires knowledge of its inclination (or tilt) and
orientation. The TCM2 sensor fits these needs because it can measure its absolute compass,
roll and pitch angles.

Angular orientation sensors

There are two kinds of angular orientation sensors: the first one measures angular velocities
and magnetic fields, then integrates these values to compute an absolute orientation1; the
second one directly measures absolute angles using "mechanical" compass and tilt sensors.

The second type of sensors is more interesting for our project because they cannot drift under
normal conditions. In our circumstances, drifting sensor values would certainly cause a crash.

Precision Navigation's TCM2 compass and tilt sensor

We eventually decided to use an absolute orientation sensor that
could be easily connected to the microcontrollers. We found the
TCM2 from Precision Navigation, Inc (PNI)2, which was the most
extensive sensor with an acceptable weight. This sensor seems to
be widely used in the automobile industry, and it has been
successfully used in a similar project [2].

The TCM2 is essentially a compass sensor, based on a three-axis magnetometer augmented
with an electrolytic two-axis tilt sensor (more information later). This tilt sensor acts as an
inclinometer and allows the TCM2 to correct its compass measurement depending on its
inclination. The sensors are mounted on an electronic board with a microprocessor that
computes the compass, roll and pitch angles. The board has both RS232 and analog output
(for heading only).
The TCM2 can output any combination of compass, roll, pitch, magnetometer and
temperature measurements as ASCII data.

The TCM2 exists in three versions: the TCM2-30, the TCM2-50 and the TCM2-80. The
major difference is the range of the pitch and roll measurements: ±30°, ±50° or ±80°. This
range influences the global accuracy of the sensor: a wider range means a lower accuracy. For
our project, we have chosen the TCM2-50 version, which is the best compromise.

The TCM2 also offers iron distortion correction systems and optional damping for compass
measurements (through a configurable IRR filter).

                                                  
1 For example sensors of this type, check InterSense's web site: http://www.isense.com
2 Web site: http://www.pnicorp.com
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These are the main characteristics of the TCM2-50:

Heading accuracy 1.5° RMS
Heading resolution 0.1°
Tilt accuracy ±0.4°
Tilt resolution 0.3°
Maximal sampling rate 30Hz in "normal" mode

40Hz in "fast" mode (±0.3° noise added)
RS232 connection up to 38400bps
Supply voltage +5V DC (regulated) or 6-18V DC (unregulated)
Current 7 to 20mA

The TCM2's main disadvantages are:
ß its weight (around 50g),
ß the format it uses to send the data – since it sends pure ASCII instead of directly usable

binary data, these ASCII strings have to be converted to binary numbers first,
ß its latency1 which is around 76ms in "normal" mode and 56ms in "fast"mode (on a

38400bps RS232 link).

Note: despite its high latency, the TCM2 is still able to work at 40Hz because computation
is overlapped with measurement of the sensors.

How PNI magneto-inductive compass work

PNI's patented magneto-inductive compasses evaluate their angle to the magnetic north by
measuring the earth's magnetic field vector. Three magneto-inductive sensors perpendicular to
each other are used to compute this vector.

A magneto-inductive sensor is made of a single solenoidal winding, whose inductance change
with different applied magnetic field strengths. These sensors are well suited for portable
electronic navigation and measurement systems because they provide highly accurate
magnetic field information, consume little power and are less expensive than alternative
technologies. [11]

How electrolytic tilt sensors work

Electrolytic tilt sensors are made with a glass (or ceramic) envelope, partially filled with a
conductive fluid. Vertical platinum electrodes go through the envelope, into the fluid.
The fluid moves due to tilting, under the influence of earth's gravity or by acceleration. When
the sensor is at zero position, the electrical impedance of the fluid from the center electrode to
the side electrodes is equal. Tilting the sensor disturbs this balanced condition and the
impedance changes in proportion to the angle of tilt. Since the center of gravity of the volume

                                                  
1 For a detailed explanation, refer to the "Output response" paragraph in [11].
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of fluid remains fixed, and the electrodes move with the envelope, the sensor acts therefore as
liquid potentiometer.

An AC excitation voltage is applied between the side electrodes. When the sensor is
horizontal, the voltage at the center electrode is 50% of the excitation voltage. Tilting the
sensor will cause a proportional voltage variation around the 50% point.

Note: applying DC voltage to the electrodes would damage the sensor because of the
electroplating action that would occur.

Tilt sensors electrical characteristics normally depend on temperature, therefore the need for
temperature compensation. However, none is necessary in the TCM2 according to the
documentation [11] - the temperature sensor was left for backward compatibility with the
first-generation TCM1.
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ANGULAR VELOCITY MEASUREMENTS

Because the TCM2 is not designed to evaluate angular speeds, we had to rely on specific
sensors to achieve angular speed measurement: piezoelectric gyroscopes.

How piezoelectric gyroscopes work

Piezoelectric gyroscopes employ the principle that a Coriolis force results if an angular
velocity is applied to a vibrating object. Murata's Gyroscope Application Guide [7] describes
exactly how it works:

The piezoelectric ceramic vibrates at the resonant frequency in a vertical direction. When a
rotational velocity is introduced into the system, the Coriolis force causes the ceramic to
vibrate in the horizontal direction. This horizontal vibration causes the ceramic material to
distort from the left to the right of the material. This distortion causes the piezoelectric
material change the phase angle of the inputted voltage from the left side to the right side.
[…] The sensors on the top of the Bimorph material read the analog output voltages. These
forces are in relation to the angular velocity only. The Coriolis effect delays the signal by 90
degrees at the full force.

Since each sensor can only measure angular velocity in one dimension (or around one axis), 3
sensors mounted perpendicularly to each other are required to measure reliably the rotation
speed.
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Murata's ENC-05 piezoelectric gyroscope

We ended up with Murata sensors because they have been used
successfully in similar projects (Keyence Engager GSIII or [2]),
and we simply did not find any better product.
Murata produces several types of piezoelectric gyroscopes
depending on the application. We chose the ENC-05E because it is
the best compromise between dimensions, weight, precision and
maximal angular speed:

ENC-05E ENV-05D ENC-03J
Maximal angular speed (°/s) 90 80 300
Dimensions (mm) 21.5 x 8.5 x 7.1 37.2 x 29.8 x 17.8 15.5 x 8.0 x 4.3
Weight (g) 2.7 50 1
Price (CHF per unit) 261 115 35

Only the ENV-05D outputs a signal ready to be read by an A/D converter, since it includes
internal circuitry to amplify and filter the signal. The ENC-05E and ENC-03J gyroscopes
require dedicated amplifier circuits.

Note: the ENC-05E is available in two variants: A, with a resonance frequency of 25kHz,
and B with a resonance frequency of 26.5kHz. When using several ENC-05E, A and B
variants should be used to limit any possible perturbation.

ENC-05 output signal amplifiers

According to the ENC-05 datasheet, the sensor measures angular velocities up to 90°/s with a
scaling factor of 1.11mv/°/s ( ±20%), while its output voltage (Vout) is centered around a
reference voltage (Vref) - which is approximately 2.3V.
Therefore, Vout should vary with amplitude of ±100mV around Vref. However, experimental
measures have shown variations up to ±600mV. Furthermore, the example ENC-05E
amplifier circuit we were able to find [2] has gain of about 9 only – a bit small to fit a 0-5V
A/D converter… Since we had no time to characterize the sensor precisely (to measure its
"true" output range and scaling factor), we finally decided to amplify the signal with a gain of
about 10 times - this allows a sensor output variation of ±250mV approximately.

Since the ENC-05 outputs both Vout and Vref on separated pins, properly amplifying and
filtering the output signal would have required a differential amplifier (to compute the voltage
Vout – Vref), followed by an active 2nd order2 Band-Pass filter to remove the possible output
drift and the noise around the frequency response (about 25kHz). In the current context, such
design is a "luxury" since no symmetrical power is available on the PCB (required for

                                                  
1 For undisclosed reasons, ENC-05E sensors are not available through Murata Switzerland and we had to bought
them from K-Team ( http://www.k-team.com ).
2 A 2nd order filter has a stronger slope and minimizes the phase shift.
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differential amplifiers) and dozens of operational amplifiers, resistors and capacitors would
have been necessary.

We found experimentally that Vref remained stable when the sensor was moved - according
to the datasheet it should vary only with the temperature. It's also important to remember that
1) we do not need information about the very low angular speed since we already have it from
the TCM2 sensor, and 2) since we won't likely sample the gyroscopes above 100Hz, we do
not really need frequencies above 50Hz (Nyquist's law).

Considering these facts, we built an amplifying and filtering circuit inspired from the sample
circuit proposed by Murata for its ENC-03J. [8]

This circuit achieves the 4 requested functions:
ß The passive High-Pass filter has a cutoff frequency of 0.33Hz and removes the DC

component of the signal (which is actually Vref), along with any eventual drift.
ß The active Low-Pass filter has a cutoff frequency of 588Hz and removes the high-

frequency noise - a cutoff frequency of more than 10 times the target top-frequency
guaranties a pure signal.

ß The active Low-Pass filter also amplifies the signal with a gain of 9.2.
ß The amplified and filtered signal is centered on VDD/2 in order to fit exactly the middle of

the 0-VDD A/D converter inputs, while remaining independent from any drift of VDD.

The VDD/2 reference voltage is produced by a simple
voltage divider, connected to a voltage follower OA that
guarantees a minimal output resistance.

Operational amplifiers are LMC6582 one, because they
perfectly fit our needs and are available in stock at the ASL.
The LMC6582 is a rail-to-rail operational amplifier able to
output voltage from 0.2V to 4.85V approximately. [9]

R0=220kW

C0=2.2µF

VOUT

VDD / 2

+

_ V

C0=3.3nF

R2=82kW

VDD

R2=10kW

R=10kW

VDD

VDD / 2
+

_

VDD

R=10kW
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These two graphs show the theoretical
frequency response of the amplifier to
an AC signal, where the gray area
figures the 5-50Hz band.

This circuit also spots some strong
advantages:
ß a very-low phase shift in the

frequency band we are interested in,
ß a very low output resistance

(virtually zero)1,
ß a good input resistance2 (virtually

infinite for AC and around 220kW
for DC),

ß it does not inverse the signal,
ß it requires few components.

This oscilloscope screen
capture shows the action
of the circuit on the final
PCB. The top signal is the
output of the circuit while
the bottom signal is the
raw output of the Vout
sensor's pin.

                                                  
1 The PIC 16F876 tolerates a maximum load resistance of 10kW on it’s A/D inputs. [10]
2 The ENC-05E requires a minimal output load resistance of 50kW.
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MOTOR SPEED CONTROL

Since we decided to keep the motor amplifiers from the original PCB, the problem was to find
how to drive these amplifiers from the PICs.

PWM motor controllers

The electrical motors are driven through 4kHz Pulse Width Modulated (PWM) amplifiers
(see annex E). PWM amplifiers are low-cost amplifiers based on transistors that are switched
rapidly ON and OFF. When the transistor is ON, a current flow goes through the motor that
makes it rotate; when the transistor is OFF, no current goes through the motor and it is
stopped. Speed control is achieved by varying the ratio between ON and OFF times (also
called "duty-cycle"). Finally, the higher the PWM frequency is, the smoother the rotation will
be.

Note: it is not possible to use any PWM frequency, since the transistors have finite switch
times (when changing their ON-OFF state).

Controlling the motor speeds

The PWM amplifiers are located on the lower PCB board and expect 0-10V 4kHz PWM input
signals. However, we have found experimentally that 1) it is possible to feed the PWM
amplifiers with PWM signals as low as 0.7V (or even from a TTL output), and 2) a 4kHz
PWM is way from being optimal: a higher frequency PWM make the motors less noisy while
the voltage on the motor pins is "smoother".

Since the PWM amplifiers have high-input resistances, we decided to drive them directly
from the PIC's 0-5V PWM outputs1. Producing PWM signals on the PIC is all about finding a
compromise between the frequency and the resolution of the duty cycle: the higher the
frequency, the less the resolution.

We decided to use an 8bits resolution with the maximal possible frequency i.e. 19531Hz. Our
tests have shown that the PWM amplifiers were able to work fine with such signals.

Note: the motors start when the PWM duty cycles reach about 20 – maximal duty cycle
value is 255.

                                                  
1 PIC's pins may source up to 25mA. [10]
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These two oscilloscope screenshots show the voltage on the pin of one of the motors. As said
earlier, we can clearly see that a 20kHz PWM is perfectly supported by the amplifiers and
motors.
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PC-BASED CONTROLLER SOFTWARE

To simplify the development of the helicopter controller, our idea is to run it remotely on the
PC. Once the controller is completed and tested, it would be rewritten to be executed on the
PCB's microcontrollers.

Overview

The program was written in C++ using Borland C++ 5. Using a Rapid Application
Development environment enables fast creation of programs with user-friendly graphical
interfaces. Furthermore, the core controller code can be written in pure C to be easily portable
on the PICs (see annex F).

The program interface displays the values of the sensors on the PCB (gyroscopes and TCM2)
and also offers controls to set each motor rotation speed (refer to annex B for more
information). The controller's bandwidth (the rate at which the sensors values are read and the
motor speeds are set) can be changed from 1 to 100Hz.

The application implements a preemptive multi-threaded structure:
ß The main thread handles all OS events and updates the display window with the latest

sensor values (refresh rate is 25Hz).
ß The controller thread handles communication with the PCB and has strictly no user

interface. This thread is defined as "time-critical" to ensure it gets maximal processing
power. The yet-to-be-written code to stabilize the helicopter will have to be inserted in
this thread. This thread can theoretically run at frequencies up to 500Hz approximately.
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Timing accuracy

A controller must have a cycle time as stable as possible i.e. 20ms if the controller's frequency
is set to 50Hz. Having the controller being executed on the PC make the task more complex
since it has to deal with a heavy operating system.
To ensure the validity of the "controller-on-PC" concept, several measures have been
performed, by monitoring the RS232 link, while the controller was set to run at 50Hz.

Important: the current controller code simply requests sensor values from the PCB and
sends back the motor speeds defined by the user. Adding code to effectively control the
helicopter will change the thread execution's duration and may invalidate these results.

In these two oscilloscope
screen captures, the top
and bottom signals
respectively represent the
PC transmit and receive
RS232 pins.
We first evaluated the
round-trip time of a
comple te  cont ro l le r
sequence i.e. requesting
the sensor values from the
PCB ( f i r s t  pu l s e
sequence), receiving them
(second one) and sending
back new motor speed
values (third one): the
result is about 2.5ms.
Even if it will increase
when the controller thread
will implement actual
computations, it should
remain a few ms close to
this very correct value –
especially considering a
20ms controller's cycle
time.

Secondly, by measuring
the start offset of the
sequence located at
+100ms, we can compute
a mean value on the last 5
cycle times; the result is
49.95Hz.
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The fact that we do not have the requested 50Hz is very likely due to the execution time of the
thread itself.

Finally, it is necessary to evaluate the stability of the controller's cycle time. According to
timing measures done in the program itself, every 680 to 700ms, there is a drift of
approximately 1 ms in the cycle time. We have no idea regarding the cause of this drift
although properly reconfiguring the PC might help.
Further tests showed that under heavy OS load (for example, when moving around the
program window very quickly), the frequency varies between the usual 49.95Hz and
50.25Hz.

Note: for unknown reasons, some frequencies cannot be reached by the controller thread
e.g. it's impossible to have a frequency between 50 and 100Hz: only 50Hz and 100Hz are
actually available.
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CONCLUSION

Although we did not have time to test it extensively, the computer-based control system we
have built seems to meet fully the initial requirements:
ß angular orientation and angular velocity are successfully measured on all 3 axes,
ß the motor speeds are controlled from the on-board microcontroller,
ß we have a working two-ways RS232 wired link between the helicopter and the PC,
ß the PC computer is able run the controller with acceptable timing precision,
ß major processing power is remaining on the Master PIC and on the PC to do further

computations,
ß not all the helicopter payload has been used.

Even if we did not go as far as initially planned, the result of this project should be strong
base for future autonomous helicopter projects at the ASL.

From a personal point of view, I have to say I have been very satisfied with this project since
I have learned much in various areas through the development of this complete system from
the ground up: choosing sensors and microcontrollers, designing and building a PCB,
programming microcontrollers…

I'd like to thank Professor Roland Siegwart for setting up this project at my suggestion,
Daniel Burnier and Jean-Christophe Zufferey for their time and precious help through the
semester.
Many thanks to all other members of the ASL who took the time to answer my numerous
questions.
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ANNEX A: USING THE CONTROL SYSTEM

This page is intended as "Getting started" guide to the computer-based control system.

Starting the system

To use the helicopter control system, proceed as follow:
ß Connect the RS232 cable to the PC (use the COM2 port).
ß Power-up the PCB – use a power source between 7 and 9V DC that can source up to 20A

current.
ß Wait a few seconds to ensure complete startup of all the PCB components.
ß Launch the control software.
ß If all sensors values are updated correctly in the window, you may start using the system.

Warning: because the motors get warm rapidly, do not fly the helicopter for a longer time
than 5 to 10mn. Then wait several minutes until the motors get back to normal temperature.

Troubleshooting

In case the system is not working, check the following issues:
ß When the PCB is powered up, each PIC's LED should light up during 1 second,
ß The Slave PIC's LED turns on when it detects the beginning of the data sent by the TCM2

and turns off when it detects the last byte. As a consequence, it should blink at the same
clock rate than the TCM2 (normally 40Hz), as soon as the PCB is powered.

ß The Master PIC's LED light up when it receives a "Get sensor values" command and turns
off when it receives "Set motor speeds" command. Therefore it should blink at the
controller's frequency.

ß Try to communicate "manually" with the PCB through an RS232 terminal (refer to annex
B).

ß Make sure TCM2 settings are correct (refer to annex D).
ß If the I2C extension connector is not used, ensure the termination plug1 is present.

Note: resetting only one PIC may put the PCB software in an undefined state (especially
because of the I2C communication between the 2 PICs). In case a reset is requested, it is
highly recommended to reset both PICs simultaneously (simply disconnecting and
reconnecting the PCB from power will do it).

                                                  
1 The termination is simply pull-up 10kW resistances connected on the clock and data lines.
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ANNEX B: COMMUNICATION PROTOCOLS

This sections describes in details the communication protocols used by the system, so that
new functionalities may added later.

Communication between PICs

The Slave and Master PICs are connected through an I2C bus at 400kBits. There is no real
communication protocol between them since only two cases may occur:
ß if the Slave is requested for data (I2C slave transmitting mode), it returns the latest TCM2

values from its buffers,
ß if the Slave receives data (I2C slave receiving mode), it assumes this data contains the new

PWM duty cycles values.

Bytes received from the Slave by the Master
Byte # Format Description
1 Unsigned (0 -> 255 value) Compass high-byte
2 Unsigned (0 -> 255 value) Compass low-byte
3 Signed (-128 -> +127 value) Pitch high-byte
4 Unsigned (0 -> 255 value) Pitch low-byte
5 Signed (-128 -> +127 value) Roll high-byte
6 Unsigned (0 -> 255 value) Roll low-byte

Bytes sent to the Slave by the Master
Byte # Format Description
1 Unsigned (0 -> 255 value) Left PWM duty cycle
2 Unsigned (0 -> 255 value) Right PWM duty cycle

Note: the PICs also implement a very basic communication scheme through hardware
interrupts (refer to the end of the "Control system design" section).

Communication between PCB and PC

The PC is connected to the Master PIC through a 115'200bps RS232 link. The communication
protocol is very simple: the PIC receives commands from the PC and possibly replies to them.
There is no acknowledge nor checksum to ensure data reception and integrity.
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A command is a simple byte possibly followed by data bytes. Depending on the command,
the PIC will reply by sending back a predefined number of data bytes.

Warning: since the PIC does not queue commands but processes them immediately,
sending commands too quickly1 may overflow the RS232 reception buffer and paralyze the
PIC into an undefined state.

The following commands are currently defined:

Name Command byte Command description
Get sensor values 'g' Asks the PCB to return the current sensors values.
Set motor speeds 's' Sets the duty cycles of the 4 motors PWM.2

Bytes to send with the "Set motor speeds" command
Byte # Format Description
1 Unsigned (0 / 255 value) Front PWM duty cycle
2 Unsigned (0 / 255 value) Back PWM duty cycle
3 Unsigned (0 / 255 value) Left PWM duty cycle
4 Unsigned (0 / 255 value) Right PWM duty cycle

Bytes returned by the "Get sensor values" command
Byte # Format Description
1 Unsigned (0 / 255 value) X-axis gyroscope value
2 Unsigned (0 / 255 value) Y-axis gyroscope value
3 Unsigned (0 / 255 value) Z-axis gyroscope value
4 Unsigned (0 / 255 value) Compass high-byte
5 Unsigned (0 / 255 value) Compass low-byte
6 Signed (-128 / +127 value) Pitch high-byte
7 Unsigned (0 / 255 value) Pitch low-byte
8 Signed (-128 / +127 value) Roll high-byte
9 Unsigned (0 / 255 value) Roll low-byte

Important: compass, pitch and roll values are returned in a custom fixed-point format with
one decimal digit for the fractional part e.g. the value "–34.2" will be sent as "-342".

                                                  
1 Successful tests have been performed with a controller frequency up to 100Hz i.e. 100 "Get sensor values" and
"Set motor speeds" command are sent and received each second. Support for higher frequencies have not been
tested.
2 Depending on the options defined when the PIC source code was compiled, the new duty cycles values may not
be effective immediately, but only on the next "Get sensor values" command (check source code for more
information).
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ANNEX C: PCB DESIGN ERRORS

Once the PCB was printed and we started mounting the components, we realized there were
still some mistakes that were not found during the final check.

In the eventuality of the design of a new version of the PCB based on the layout of the current
one, the following issues should be fixed (by order of importance):

ß The gyroscope footprint is wrong: it was designed viewed from bottom - as a
consequence, the footprint is mirrored vertically. Fortunately, we found a workaround by
mounting "modified" connectors on the PCB that swap the pins 2-3 and 1-4. The gyros are
then normally inserted into these connectors. This incorrect footprint only affects the
horizontally mounted gyroscopes.

ß As seen on this picture, the closed-loop track on the
Operational Amplifier X11 is missing (it was accidentally
deleted before the PCB layout was sent to printing).

ß The 14-pins connector's position is slightly incorrect.

ß The programming connector for the Slave PIC is a bit too close
from the spacer that connects to the TCM2.

ß The MAX232 and the C5 capacitor components are a bit too
close from the spacer that connects to the lower PCB.

ß There should be separate ground planes for both analogical and digital parts of the
schematics to ensure the best possible electrical signal quality.

ß The 16F876 PIC has 5 A/D inputs on pins RA0, RA1, RA2, RA3 and RA5, but only
certain combinations of A/D and I/O inputs are allowed e.g. RA0, RA1 and RA5 as A/D
and RA2 and RA3 as I/O. Therefore, the incoming gyro signals should have been
connected to pins RA0, RA1 and RA5 instead of pins RA0, RA1 and RA2. The current
situation requires all pins to be set as A/D since RA3 and RA5 cannot be set to I/O while
the other pins are set to A/D.
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ANNEX D: REQUIRED TCM2 SETTINGS

It's important that the TCM2 parameters are set correctly when the system is powered up
because the onboard PCB will not check for incorrect settings nor change them.

Since these settings are stored in the sensor's EEPROM, they can safely be set by connecting
the TCM2 to a PC computer and configure it through an RS232 terminal. The settings will
remain even if the TCM2 is disconnected from power.
The only command that the PCB sends to the TCM2 at startup is the "Enter continuous
sampling mode" to make sure it starts sending measures.

The TCM2 parameters should be set as follow (the command to set these parameters can be
found in the TCM2 Users Manual):

Parameter Value
Fast sampling Enabled
Clock rate 40Hz 1

Damping Disabled
Inclinometer clipping value 0.0
Sampling period divisor 1
Baud rate 38400
Compass units Degrees
Inclinometer units Degrees
RS232 output word format Standard
Compass data for output word Enabled
Pitch data for output word Enabled
Roll data for output word Enabled
Magnetometer data for output word Disabled
Temperature data for output word Disabled
Magnetic distortion alarm Enabled
Analog output Disabled
Low power mode Disabled 2

New "Halt" command Enabled
Magnetic north or true north Magnetic
Declination Angle 0.0 3

Warning: modifying the format of the data sent by the TCM2 will very likely crash the
PCB software.

                                                  
1 Any clock rate should work fine though.
2 This feature was not tested.
3 This value was left to the default setting.
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ANNEX E: ORIGINAL PCB REVERSE-ENGINEERING

In order to minimize development time, we decided to re-use partially the original PCB of the
Keyence Engager GS-III. This annex summarizes the reverse-engineering work that was done
on this PCB.

The original PCB is made of 2 separate boards maintained together by mechanical
connection, and electrically connected through a set of 14 pins.
ß The lower board is essentially analogical: it provides 5V and 10V DC power, receives and

possibly partially decodes radio signals, and hosts the PWM amplifiers to control the 4
electrical motors.

ß The upper board contains the microcontroller and the angular velocity sensors (Murata
ENC-05E). It handles radio signals decoding, PWM generation, gyroscope signal
amplification and sampling.

The electrical motors are powered by 4kHz PWM amplifiers, which are controlled by 0-10V
PWM signals. These are generated by the upper board, according to the radio control orders
and gyroscopes outputs.

Here's the layout of the 14-pins connector:

Pin # Signal
(radiocontrol OFF)

Signal
(radiocontrol ON)

Possible meaning

1 5V DC 0V Radio control signal received
correctly1

2 110mV DC 4kHz 10V PWM Front motor control
3 110mV DC 4kHz 10V PWM Back motor control
4 110mV DC 4kHz 10V PWM Left motor control
5 110mV DC 4kHz 10V PWM Right motor control
6 5V DC 5V DC 5V DC power
7 2.65V DC Series of pulses
8 Noise 0-4.8V 5V PWM Decoded radio signal?
9 2.35V DC 2.35V DC Raw vertical gyroscope sensor output
10 Ground Ground Ground
11 1.80V DC Series of pulses
12 4V 3V PWM Radio signal envelope?
13 3.90V DC Series of pulses
14 10V DC 10V DC 10V DC power

Notes: we haven't measured how much current it is possible to sink from pins 6 and 14,
however, these voltages remain stable as long as the PCB is powered with a voltage
between 3.2V and 9V.

                                                  
1 There is a 2 seconds delay before the pin voltage drops to 0V once the radio control is turned ON.
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This graph shows the mechanical
layout of the original PCB upper
board (dimensions are in mm).
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ANNEX F: PICC COMPILER – PROS & CONS

To reduce development time, we decided to program the PIC microcontroller using a C-
compiler from Custom Computer Services, Inc1 instead of using raw assembly language.
Although this compiler effectively helped software development, it has some serious flaws.

I did not find any problem or bug with the C-compiler itself: all C conventions seem to be
perfectly implemented. The IDE is very decent and stable, compiles the source code quickly
and spots many useful tools (Decimal / Hexadecimal converter, RS232 terminal, mixed C-
code / generated assembly listing…). The PICC compiler also provides support for floating-
point operations, trigonometric operations, string manipulations and more…

Assembly coding in the middle of C code is supported, but in a limited way, since register
names are not predefined and no macros are available, e.g. for register bank selection. It's
more efficient to define manually registers as C-variables (using the "#byte" preprocessor
command) and manipulate them using standard C-code.

The provided documentation is sufficient, but far from being exhaustive: many functions (like
the I2C ones for example) would benefit from detailed explanations on how they exactly
work.
Because of this limited documentation, and because you do not have access to the assembly
code generated for the PICC built-in functions, you have no way to know how these functions
handle the various special cases that may occur: buffer overflow, calling the function at
interrupt time, successive calls without delays between them…

For example, in this project, we had to write custom versions of the I2C routines, because the
ones provided by PICC definitely did not work when doing multiple reads/writes (the
example source code did not work either). We also had to write a special routine to handle the
RS232 buffer overflow case, which was not handled at all by PICC. And finally, replacing the
PICC 10bits to 8bits A/D conversion routines provided better results: the PICC routines
simply truncate the original value, while the new routine rounds it to the nearest 8bits value.

As a conclusion, regarding the use of the PICC compiler versus assembly coding, I strongly
recommend it, since it speeds up a lot development and debugging time - and above all, C
code is way easier to read than assembly.
However, I suggest the creation, at the ASL, of custom replacement libraries for critical
functions (I2C, RS232, A/D conversions…) to ensure complete control over the generated
assembly code.

                                                  
1 PICC IDE version 3.11 - Web site: http://www.ccsinfo.com
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ANNEX G: TO DO LIST

Here's a list of ideas, in no particular order, which may be used as a starting point by the
people who will continue on this project.

Helicopter

ß Characterize the Murata ENC-05 gyroscopes1 (angular velocity range, linearity, scale
factor, bandwidth...).

ß Characterize the TCM2-50 (latency, bandwidth, sensibility to vibrations…).
ß Experiment with TCM2 digital damping settings.
ß Test TCM2 low-power mode.
ß Build a testing platform to safely try out the helicopter hovering controller.
ß Use a BlueTooth module to communicate with the PC instead of a wired-RS232

connection.
ß Very important: design a better fuselage, more robust, possibly lighter, and above all, with

"true" fixations for the engines and future sensors.
ß Replace motors and gears with more effective ones.
ß Add feedback control to motors to increase speed control accuracy.
ß Build a differential amplifier (with 2 or more operational amplifiers) that uses the Vref

and Vout outputs from the Gyrostar ENC-05, to replace the current amplifiers.
ß Replace the lower board of the PCB with one designed specifically for the project.

PCB Software

ß Add better error handling e.g. RS232 buffer overflow, errors reported by the TCM2, I2C
writes not being acknowledged…

ß Implement a security check that would stop all motors if no commands is received from
the PC in a given laps of time.

ß Implement a "Shutdown" command ('d') that would be sent by the PC to allow the PCB to
perform clean up before being powered-down e.g. to stop the TCM2 continuous sampling.

ß Implement an "Emergency stop" command ('h') that would immediately stop the motors
and put the PCB software into an idle mode, virtually disconnected from the PC.

ß Write custom versions of the RS232 routines from PICC, as it has been done for the I2C
routines, in order to have a better control over the USART unit.

ß Implement a more robust communication protocol between PCB and PC: checksums,
acknowledges…

ß Write a custom interrupt handler that allows interrupt reentrancy with interrupts levels.
ß On the Slave PIC, handle the RS232 communication with the TCM2 at interrupt level –

this would free the main task for other computations.

                                                  
1 Check with the K-Team company which is also using these sensors ( http://www.k-team.com ).
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PC Software

ß Reformat the PC and re-install a clean OS with only strictly required applications and
background services.

ß Tune C++ code for maximal performance. This include setting compiler optimizations,
removing debugging code if any, improve memory management, use as few as possible
calls to system API into the controller thread…

ß Use low-level Windows APIs to control the controller thread periodicity (find a way so
that the thread gets called by the OS at regular times instead of putting itself into "sleep"
until the next cycle starts).

ß Add better error handling e.g. COM port not available, no more data received from the
PCB, etc…

ß Increase the controller frequency from 50Hz to 100Hz in order to improve the sampling
quality of the gyroscope outputs (Nyquist's law). It may be necessary to smooth
(interpolate) the TCM2 returned values, which would be still received at 40Hz only
(Kalmann filter?).

ß Use an asynchronous RS232 communication library to avoid blocking the controller
thread if anything goes wrong on the RS232 link.
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/************************************************************************************/
/* This header contains common definitions for both Master and Slave PICs */
/* EPFL IMT/ISR/ASL - Pierre-Olivier Latour 2002 */
/************************************************************************************/

/*
Preprocessor settings

PWM Mode 1: 100Khz PWM with duty cycle from 0 to 200
PWM Mode 2: 25Khz PWM with duty cycle from 0 to 200
PWM Mode 3: 4883Hz PWM with duty cycle from 0 to 256
PWM Mode 4: 19531Hz PWM with duty cycle from 0 to 256
PWM Mode 5: 19531Hz PWM with duty cycle from 0 to 1024 - NOT SUPPORTED!

Sync duty cycles: set to 1 to change the PWM duty cycles at the same time
on Master and Slave PICs (through a HW interrupt signal sent when the
GET_DATA command is received)
*/
#define __PWM_MODE__ 4
#define __SYNC_DUTY_CYCLES__ 1

/*
Global PIC settings
*/
#include <16F876.h>
#device *=16 ADC=10 //16 bits pointers and 10 bits ADC values
#use DELAY(CLOCK=20000000) //PIC is running at 20MHz
#fuses HS,NOWDT,PUT,NOBROWNOUT

/*
LED settings
*/
#define LED 53
#define LED_On() Output_High(LED);
#define LED_Off() Output_Low(LED);

/*
HW interrupt between Master and Slave
Send interrupt signal from B0
Receive interrupt signal on B1
*/
#define INT_OUT 49
#define Interrupt_Send() Output_High(INT_OUT);
#define Interrupt_Clear() Output_Low(INT_OUT);

/*
Set IO pins directions manually
*/
#use FAST_IO(A)
#use FAST_IO(B)
#use FAST_IO(C)

/*
I2C settings
*/
#define SLAVE_ADDRESS 0x30 //Last bit must be 0!

/*
A/D Converters settings
*/
#define ADC_CLOCK ADC_CLOCK_INTERNAL
#define ADC_DELAY 10 //in us - Delay time after changing the ADC channel to get a valid read

/*
Startup delay
*/
#define STARTUP_DELAY 1000 //ms
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/*
Motor PWM settings
(PWM period) = (1 / clock) * 4 * scaler * (Period + 1)
(PWM duty cycle max) = (PWM period) * clock / scaler = 4 * (Period + 1)
*/
#if __PWM_MODE__ == 1
#define kPWMScaler T2_DIV_BY_1
#define kPWMPeriod 49
#elif __PWM_MODE__ == 2
#define kPWMScaler T2_DIV_BY_4
#define kPWMPeriod 49
#elif __PWM_MODE__ == 3
#define kPWMScaler T2_DIV_BY_16
#define kPWMPeriod 63
#elif __PWM_MODE__ == 4
#define kPWMScaler T2_DIV_BY_4
#define kPWMPeriod 63
#elif __PWM_MODE__ == 5
#define kPWMScaler T2_DIV_BY_1
#define kPWMPeriod 255
#endif

/*
IO pins directions macros
*/
#define kPinInput 1
#define kPinOutput 0
#define kPinADC kPinInput //Pins A0,A1,A2,A3 and A5 only!
#define kPinPWM kPinOutput //Pins C1 and C2 only!
#define kPinInINT kPinInput //Pin B0 only!
#define kPinOutINT kPinOutput //Pin B1 only!
#define BuildDirectionByte(p0,p1,p2,p3,p4,p5,p6,p7) (((p7) << 7) | ((p6) << 6) | ((p5) << 5) | ((p4) << 4) | ((p3) << 3) | ((p2) << 2) | ((p1) << 1) | (p0))
#define SetPortDirections_A() Set_Tris_A(BuildDirectionByte(kPortA_0, kPortA_1, kPortA_2, kPortA_3, kPortA_4, kPortA_5, kPortA_6, kPortA_7))
#define SetPortDirections_B() Set_Tris_B(BuildDirectionByte(kPortB_0, kPortB_1, kPortB_2, kPortB_3, kPortB_4, kPortB_5, kPortB_6, kPortB_7))
#define SetPortDirections_C() Set_Tris_C(BuildDirectionByte(kPortC_0, kPortC_1, kPortC_2, kPortC_3, kPortC_4, kPortC_5, kPortC_6, kPortC_7))

/*
16Bits to 8Bits macros
*/
#define HiByte(v) (((v) >> 8) & 0xFF)
#define LoByte(v) ((v) & 0xFF)
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/************************************************************************************/
/* This file contains source code for Master PIC */
/* EPFL IMT/ISR/ASL - Pierre-Olivier Latour 2002 */
/************************************************************************************/

#include "Header.h"
#include "I2C.h"

/************************************************************************************/
/* DEFINITIONS */
/************************************************************************************/

//RS232 parameters for communicating with PC
#use RS232(baud=115200,parity=N,xmit=PIN_C6,rcv=PIN_C7)

//I2C parameters for communicating with PIC Slave
#use I2C(MASTER,sda=PIN_C4,scl=PIN_C3,FORCE_HW,FAST)

//IO pins directions
enum {

kPortA_0 = kPinADC, //Gyro X
kPortA_1 = kPinADC, //Gyro Y
kPortA_2 = kPinADC, //Gyro Z
kPortA_3 = kPinADC, //ADC channel - UNUSED
kPortA_4 = kPinOutput,
kPortA_5 = kPinADC, //ADC channel - UNUSED
kPortA_6 = kPinOutput,
kPortA_7 = kPinOutput

};
enum {

kPortB_0 = kPinOutput,
kPortB_1 = kPinOutINT, //Send HW interrupt signal to slave
kPortB_2 = kPinOutput,
kPortB_3 = kPinOutput,
kPortB_4 = kPinOutput,
kPortB_5 = kPinOutput, //LED
kPortB_6 = kPinOutput,
kPortB_7 = kPinOutput

};
enum {

kPortC_0 = kPinOutput,
kPortC_1 = kPinPWM, //PWM 2 (Forward motor)
kPortC_2 = kPinPWM, //PWM 1 (Backward motor)
kPortC_3 = kPinInput, //I2C clock
kPortC_4 = kPinInput, //I2C data
kPortC_5 = kPinOutput,
kPortC_6 = kPinOutput, //RS232 transmit
kPortC_7 = kPinInput //RS232 receive

};

/*
RS232 protocol between PC and PIC Master

-> Byte #1: command = COMMAND_SETPWM
-> Byte #2: PWM forward
-> Byte #3: PWM backward
-> Byte #4: PWM left
-> Byte #5: PWM right

-> Byte #1: command = COMMAND_GETDATA
<- Byte #2..n: gyro values and TCM values (see format below)

*/
#define COMMAND_GETDATA 'g'
#define COMMAND_SETPWM 's'

//Format of the data sent to the PC
enum {
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kData_GyroX = 0,
kData_GyroY,
kData_GyroZ,
kData_CompassHB,
kData_CompassLB,
kData_PitchHB,
kData_PitchLB,
kData_RollHB,
kData_RollLB,
kDataSize

};

/************************************************************************************/
/* GLOBAL VARIABLES */
/************************************************************************************/

long dutyForward = 0,
dutyBackward = 0;

/************************************************************************************/
/* ROUTINES */
/************************************************************************************/

/*
This routine send a buffer over the RS232 to the PC
*/
void SendBuffer(char* buffer, int size)
{

while(size) {
PutC(*buffer);
--size;
++buffer;

}
}

/*
This routine reads a 10bits value on an ADC channel and returns an 8bits value
*/
int Read_ADC_Channel(int num)
{

long value;
int result;

//Select channel and wait a short time to make sure we will get a valid ADC read
Set_ADC_Channel(num);
Delay_US(ADC_DELAY);

//Read ADC
value = Read_ADC();

//Round value to nearest 8bits value according to last 2 bits
if(value & 0x0002)
result = (int) (value >> 2) + 1;
else
result = (int) (value >> 2);

return result;
}

/*
This routine is called when data is received over RS232 from the PC

- To access the slave in transmitting mode, last bit of the Slave address must
be set to 1.

- In Master-receiving mode, last read must have acknowledge bit set to 0 to
indicate end of transfer so that slave can start again watching for
"Start" conditions on the I2C bus.

*/
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#INT_RDA
void RS232_Interrupt()
{

byte incoming;
int buffer[kDataSize];
int dutyLeft,

dutyRight;

Start:
incoming = GetC();
switch(incoming) {

case COMMAND_GETDATA:
//Flash LED
LED_On();

//Update the PWM duty cycles
#if __SYNC_DUTY_CYCLES__

Interrupt_Send();
Set_PWM1_Duty(dutyBackward);
Set_PWM2_Duty(dutyForward);
Interrupt_Clear();

#endif

//Read values from gyros X,Y and Z - Y and Z are swapped on PIC pins!
buffer[kData_GyroX] = Read_ADC_Channel(0);
buffer[kData_GyroZ] = Read_ADC_Channel(1);
buffer[kData_GyroY] = Read_ADC_Channel(2);

//Read values from TCM
I2CMaster_Start();
I2CMaster_Write(SLAVE_ADDRESS | 1);
buffer[kData_CompassHB] = I2CMaster_Read(1);
buffer[kData_CompassLB] = I2CMaster_Read(1);
buffer[kData_PitchHB] = I2CMaster_Read(1);
buffer[kData_PitchLB] = I2CMaster_Read(1);
buffer[kData_RollHB] = I2CMaster_Read(1);
buffer[kData_RollLB] = I2CMaster_Read(0);
I2CMaster_Stop();

//Send data to PC
SendBuffer(buffer, kDataSize);
break;

case COMMAND_SETPWM:
//Flash LED
LED_Off();

//Get PWM duty cycles from PC
dutyForward = GetC();
dutyBackward = GetC();
dutyLeft = GetC();
dutyRight = GetC();

//Send PWM duty cycles to Slave - FIXME: check for ack bit!
I2CMaster_Start();
I2CMaster_Write(SLAVE_ADDRESS);
I2CMaster_Write(dutyLeft);
I2CMaster_Write(dutyRight);
I2CMaster_Stop();

#if !__SYNC_DUTY_CYCLES__
//Set duty cycles
Set_PWM1_Duty(dutyBackward);
Set_PWM2_Duty(dutyForward);

#endif
break;
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}

//Make sure there is no remaining data to be processed
if(KBHit())
goto Start;

}

/*
Main routine
*/
void main()
{

//Flash LED
LED_On();

//Setup both PWMs
Setup_CCP1(CCP_PWM);
Setup_CCP2(CCP_PWM);
Setup_Timer_2(kPWMScaler, kPWMPeriod, 1);
Set_PWM1_Duty(0);
Set_PWM2_Duty(0);

//Setup ADCs
Setup_ADC_Ports(ALL_ANALOG); //See possible values in 16F876.h
Setup_ADC(ADC_CLOCK);

//Setup IO pins directions
SetPortDirections_A();
SetPortDirections_B();
SetPortDirections_C();

//Startup delay
Delay_MS(STARTUP_DELAY);
LED_Off();

//Set interrupts
Enable_Interrupts(GLOBAL);
Enable_Interrupts(INT_RDA);

//Run...
while(1)
;

}
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/************************************************************************************/
/* This file contains source code for Slave PIC */
/* EPFL IMT/ISR/ASL - Pierre-Olivier Latour 2002 */
/************************************************************************************/

#include "Header.h"
#include "I2C.h"
#include "RS232.h"

/************************************************************************************/
/* DEFINITIONS */
/************************************************************************************/

//RS232 parameters for communicating with PC
#use RS232(baud=38400,parity=N,xmit=PIN_C6,rcv=PIN_C7)

//I2C parameters for communicating with PIC Slave
#use I2C(SLAVE,scl=PIN_C3,sda=PIN_C4,address=SLAVE_ADDRESS,FORCE_HW,FAST)

//Interrupts priority
#priority EXT,SSP,RDA

//IO pins directions
enum {

kPortA_0 = kPinOutput,
kPortA_1 = kPinOutput,
kPortA_2 = kPinOutput,
kPortA_3 = kPinOutput,
kPortA_4 = kPinOutput,
kPortA_5 = kPinOutput,
kPortA_6 = kPinOutput,
kPortA_7 = kPinOutput

};
enum {

kPortB_0 = kPinInINT, //Receive HW interrupt signal from slave
kPortB_1 = kPinOutput,
kPortB_2 = kPinOutput,
kPortB_3 = kPinOutput,
kPortB_4 = kPinOutput,
kPortB_5 = kPinOutput, //LED
kPortB_6 = kPinOutput,
kPortB_7 = kPinOutput

};
enum {

kPortC_0 = kPinOutput,
kPortC_1 = kPinPWM, //PWM 2 (Left motor)
kPortC_2 = kPinPWM, //PWM 1 (Right motor)
kPortC_3 = kPinInput, //I2C clock (in Slave mode, this pin must be set as input)
kPortC_4 = kPinInput, //I2C data (in Slave mode, this pin must be set as input)
kPortC_5 = kPinOutput,
kPortC_6 = kPinOutput, //RS232 transmit
kPortC_7 = kPinInput //RS232 receive

};

//TCM2 data formating
#define TCM_MAX_DATASIZE 32
#define TCM_START_CHAR '$'
#define TCM_END_CHAR '\n'
#define TCM_ERROR_CHAR 'E'

//TCM2 commands
#define TCMCOMMAND_START "go\r"
#define TCMCOMMAND_STOP "h" //"h\r" (new halt command in TCM2 firmware 1.07 is one char only if "halt=e")

/************************************************************************************/
/* GLOBAL VARIABLES */
/************************************************************************************/
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long dutyLeft = 0,

dutyRight = 0;
long compass = 0;
signed long pitch = 0,

roll = 0;
int readIndex = 0;
int writeIndex = 0;

/************************************************************************************/
/* ROUTINES */
/************************************************************************************/

/*
This routine is called when the external interrupt is trigered from the Master PIC
*/
#if __SYNC_DUTY_CYCLES__
#INT_EXT
void External_Interrupt()
{

//Update PWM duty cycles
Set_PWM1_Duty(dutyRight);
Set_PWM2_Duty(dutyLeft);

}
#endif

/*
This routines sets a byte from the global variables
*/
void SetByte(int index, int value)
{

switch(index) {

case 0:
dutyLeft = value;
break;

case 1:
dutyRight = value;
break;

}
}

/*
This routines gets a byte from the global variables
*/
int GetByte(int index)
{

switch(index) {

case 0:
return (int) HiByte(compass);
break;

case 1:
return (int) LoByte(compass);
break;

case 2:
return (int) HiByte(pitch);
break;

case 3:
return (int) LoByte(pitch);
break;

case 4:
return (int) HiByte(roll);
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break;

case 5:
return (int) LoByte(roll);
break;

}
}

/*
This routine is called when data is received over I2C from the Master PIC
It must be very fast since it interrupts RS232 decoding
*/
#INT_SSP
void I2C_Interrupt()
{

int flags;
int incoming;

//Get immediately useful bits from SSPSTAT register
flags = SSPSTAT & (BF | R_W | S | P | D_A);

//I2C write operation, last byte was an address byte, buffer is full
if(flags == (BF | S)) {

incoming = I2CSlave_Read(); //Receive byte #0 (it is actually the slave address)
writeIndex = 0;

}
//I2C Write operation, last byte was data, buffer is full
else if(flags == (BF | S | D_A)) {

incoming = I2CSlave_Read(); //Receive byte #1..(n-1)
SetByte(writeIndex++, incoming);

}
//I2C Write operation, last byte was data, buffer is full
else if(flags == (BF | P | D_A)) {

incoming = I2CSlave_Read(); //Receive byte #n
SetByte(writeIndex++, incoming);

#if !__SYNC_DUTY_CYCLES__
//Update PWM duty cycles
Set_PWM1_Duty(dutyRight);
Set_PWM2_Duty(dutyLeft);

#endif
}
//I2C read operation, last byte was an address byte, buffer is empty
//(it actually contains the slave address)
else if(flags == (R_W | S)) {

readIndex = 0;
I2CSlave_Write(GetByte(readIndex++)); //Transmit byte #0

}
//I2C read operation, last byte was a data byte, buffer is empty
else if(flags == (R_W | S | D_A)) {

I2CSlave_Write(GetByte(readIndex++)); //Transmit bytes #1..n
}

#if 0
//Slave I2C logic reset by NACK from master
//Slave logic is reset in this case and starts waiting for next START bit
else if(flags == (S | D_A)) {

printf("CATCH!\n"); //Do nothing
}
//Undefined status!
else
printf("FATAL ERROR: %2X\n", flags); //Fatal error!

#endif
}

/*
Convert a string with a decimal part to a number x 10
Input string must be of the form -xxx.xxx
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Input string must use only '0..9','.' or '-' character
Input string may end with any other character
The returned value is an integer number with last digit being the decimal part
The returned value is between -3276.8 and +3276.7
*/
signed long StringToNum(char* c)
{

signed long num = 0;
int fractional = FALSE,

minus;

//Check for minus
if(*c == '-') {

minus = TRUE;
++c;

}
else
minus = FALSE;

//Read digits
while(1) {

if((*c >= '0') && (*c <= '9')) {
num *= 10;
num += *c - '0';
if(fractional)
break;

}
else if(*c == '.')
fractional = TRUE;
else
break;

++c;
}

//Check if any fractional part was found
if(!fractional)
num *= 10;

//Return value
if(minus)
return -num;
else
return num;

}

/*
This routine returns the first occurence of a given character in a string
This routine is case-sensitive
*/
char* ScanForChar(char* buffer, char c)
{

while(*buffer != c)
++buffer;

return buffer;
}

/*
This routine parses the TCM output data and extract compass, pitch and roll values

At 20MHz, a PIC executes between 2.5x10^6 and 5.0x10^6 instructions per second
-> 0.4us or 0.2us per instruction

ScanForChar is 5+14*n instructions (n is the number of chars to skip - 5 maximum) -> 75
StringToNum is 79+46*n instructions worst case (n is the number of digits in the

number - 5 maximum) -> 309
Parse_TCMData is 114 instructions long -> 114 + 3 * (75 + 309) = 1266 -> 0.5ms

worst case approximately while TCM2 runs at 40Hz=1/25ms
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*/
void Parse_TCMData(char* buffer, int size)
{

long tempCompass;
signed long tempPitch,

tempRoll;

//Extract compass value 
buffer = ScanForChar(buffer, 'C') + 1;
tempCompass = StringToNum(buffer);

//Extract pitch value
buffer = ScanForChar(buffer, 'P') + 1;
tempPitch = StringToNum(buffer);

//Extract roll value
buffer = ScanForChar(buffer, 'R') + 1;
tempRoll = StringToNum(buffer);

//Update global variables - prevents I2C from reading them in the meanwhile
Disable_Interrupts(INT_SSP);
compass = tempCompass;
pitch = tempPitch;
roll = tempRoll;
Enable_Interrupts(INT_SSP);

}

/*
This routines waits for a string formatted as "$C328.2P-15.3R20.7*XX\r\n" from the
TCM2 and extracts the values
*/
void Process_TCMData()
{

char buffer[TCM_MAX_DATASIZE];
int size = 0;

//Wait for start char
while(1) {

buffer[0] = GetC();
if(buffer[0] == TCM_START_CHAR)
break;

}
++size;

//Flash LED
LED_On();

//Copy data and wait for end char
while(1) {

buffer[size] = GetC();
if(buffer[size] == TCM_ERROR_CHAR) //Check for error returned by the TCM2
goto End;
++size;
if(size == TCM_MAX_DATASIZE) //Check for data overflow
goto End;

if(buffer[size - 1] == TCM_END_CHAR)
break;

}

//Parse data
Parse_TCMData(buffer, size);

End:
//Flash LED
LED_Off();

}
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/*
Main routine
*/
void main()
{

//Flash LED
LED_On();

//Setup both PWMs
Setup_CCP1(CCP_PWM);
Setup_CCP2(CCP_PWM);
Setup_Timer_2(kPWMScaler, kPWMPeriod, 1);
Set_PWM1_Duty(0);
Set_PWM2_Duty(0);

//Setup IO pins directions
SetPortDirections_A();
SetPortDirections_B();
SetPortDirections_C();

//Stop TCM2
printf(TCMCOMMAND_STOP);

//Startup delay
Delay_MS(STARTUP_DELAY);
LED_Off();

//Reset the USART if we have overrunned
//(possible because PICC starts the USART reception at the beginning of "main")
RS232_ClearOverRun();

//Start TCM2 - FIXME: check for acknowledge from TCM2!
printf(TCMCOMMAND_START);

//Set interrupts
#if __SYNC_DUTY_CYCLES__

EXT_INT_Edge(0, L_TO_H);
#endif

Enable_Interrupts(GLOBAL);
Enable_Interrupts(INT_SSP);

#if __SYNC_DUTY_CYCLES__
Enable_Interrupts(INT_EXT);

#endif

//Run...
while(1)
Process_TCMData();

}
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/************************************************************************************/
/* This header contains code for I2C support on PIC 16F876 */
/* EPFL IMT/ISR/ASL - Pierre-Olivier Latour 2002 */
/* */
/* IMPORTANT NOTES: */
/* _ Do not enable the SSP interrupt in Master mode since this code was designed */
/* to work with SSP interrupt OFF in Master mode. */
/* _ All routines in this file are synchronous (i.e. they block until execution is */
/* complete) but I2CSlave_Write which returns before the byte is sent. */
/* _ In slave-receiving mode, the ack bit is sent as 1 automatically by the SSP */
/* hardware if BF and SSPOV bits are cleared. */
/* _ In slave-transmitting mode, the ack bit is always sent as 1 by the SSP */
/* hardware. */
/* _ A call to I2CMaster_Start() or to I2CMaster_Restart() may generate an bus */
/* collision interrupt in certain circonstances. */
/* _ This code is not Multi-Master aware nor General Call aware. */
/* _ This code was only tested in Fast mode on PIC 16F876 (400KBits). */
/* _ Pass a non-zero value to I2CMaster_Read() to send an Acknowledge to the slave.*/
/* _ I2CMaster_Write() returns a 1 if the slave has acknowledged. */
/* _ In the slave code, the SSP interrupt routine must be as fast as possible to */
/* avoid dropping bytes if the master does successive read/write without any */
/* delay between them. */
/* _ DO NOT MIX calls to these routines with calls to PICC I2C routines - only the */
/* use of #USE I2C(...) is permitted. */
/************************************************************************************/

/*
SSP registers
*/
#byte SSPSTAT = 0x0094 //SSP status register
#byte SSPCON = 0x0014 //SSP control register
#byte SSPCON2 = 0x0091 //SSP control register 2
#byte SSPBUF = 0x0013 //serial receive/transmit buffer

/* SSP status register bits (SSPSTAT)

BF - Receive: 1 -> Receive complete, SSPBUF is full
0 -> Receive not complete, SSPBUF is empty

BF - Transmit: 1 -> Data transmit in progress (does not include the ACK
and STOP bits), SSPBUF is full

0 -> Data transmit complete (does not include the ACK and
STOP bits), SSPBUF is empty

R_W - Slave mode: 1 -> Read
0 -> Write

R_W - Master mode: 1 -> Transmit is in progress
0 -> Transmit is not in progress

S: 1 -> Indicates that a START bit has been detected last
(this bit is '0' on RESET)

0 -> START bit was not detected last
P: 1 -> Indicates that a STOP bit has been detected last

(this bit is '0' on RESET)
0 -> STOP bit was not detected last

D_A: 1 -> Indicates that the last byte received or
transmitted was data

0 -> Indicates that the last byte received or
transmitted was address

*/
#define BF (1 << 0) //Buffer Full Status bit
#define R_W (1 << 2) //Read/Write bit Information
#define S (1 << 3) //START bit
#define P (1 << 4) //STOP bit
#define D_A (1 << 5) //Data/Address bit

/* SSP control register bits (SSPCON)

CKP - Master mode: UNUSED!
CKP - Slave mode: 1 -> Enable clock

0 -> Holds clock low (clock stretch)
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SSPOV: 1 -> A byte is received while the SSPBUF is holding the

previous byte (SSPOV is a "don't care" in Transmit)
0 -> No overflow

WCOL - Master mode: 1 -> A write to SSPBUF was attempted while the I2C
conditions were not valid

0 -> No collision
WCOL - Slave mode: 1 -> SSPBUF register is written while still transmitting

the previous word
0 -> No collision

*/
#define CKP (1 << 4) //SCK release control
#define SSPOV (1 << 6) //Receive Overflow Indicator bit
#define WCOL (1 << 7) //Write collision detect bit

/* SSP control register 2 bits (SSPCON2) - Bits 0-6 are valid only in Master mode!

SEN: 1 -> Initiate START condition on SDA and SCL pins
(Automatically cleared by hardware)

0 -> START condition idle
RSEN: 1 -> Initiate Repeated START condition on SDA and SCL pins

(Automatically cleared by hardware)
0 -> Repeated START condition idle

PEN: 1 -> Initiate STOP condition on SDA and SCL pins
(Automatically cleared by hardware)

0 -> STOP condition idle
RCEN: 1 -> Enables Receive mode for I2C

0 -> Receive idle
ACKEN - Receive mode: 1 -> Initiate Acknowledge sequence on SDA and SCL pins and

transmit ACKDT data bit
(Automatically cleared by hardware)

0 -> Acknowledge sequence idle
ACKDT - Receive mode: Value that will be transmitted when the user initiates an

Acknowledge sequence at the end of a receive.
ACKSTAT - Transmit mode 1 -> Acknowledge was not received from slave

0 -> Acknowledge was received from slave
*/
#define SEN (1 << 0) //START Condition Enable bit
#define RSEN (1 << 1) //Repeated START Condition Enable bit
#define PEN (1 << 2) //STOP Condition Enable bit
#define RCEN (1 << 3) //Receive Enable bit
#define ACKEN (1 << 4) //Acknowledge Sequence Enable bit
#define ACKDT (1 << 5) //Acknowledge Data bit
#define ACKSTAT (1 << 6) //Acknowledge Status bit

/*
This routine writes a byte on the I2C bus
*/
void I2CSlave_Write(int value)
{

//Wait until the buffer is free
while(SSPSTAT & BF)
;

Write:
//Clear the write collision flag
SSPCON &= ~WCOL;

//Write byte to buffer
SSPBUF = value;

//Check for write collision
if(SSPCON & WCOL)
goto Write;

//Release the clock
SSPCON |= CKP;

}
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/*
This routine returns the content of the SSP buffer
*/
int I2CSlave_Read()
{

//Clear overflow bit - FIXME: it's better to handle the overflow case properly
//inside the SSP interrupt routine
SSPCON &= ~SSPOV;

//Return content of SSP buffer - this also clears the buffer full (BF) bit
return SSPBUF;

}

/*
This routine initiates a transfer on the I2C bus
*/
void I2CMaster_Start()
{

//Enable START bit
do {

SSPCON2 |= SEN;
} while(!(SSPCON2 & SEN));

//Wait for completion
while(SSPCON2 & SEN)
;

}

/*
This routine re-initiates a transfer on the I2C bus
*/
void I2CMaster_Restart()
{

//Enable RESTART bit
do {

SSPCON2 |= RSEN;
} while(!(SSPCON2 & RSEN));

//Wait for completion
while(SSPCON2 & RSEN)
;

}

/*
This routine finishes a transfer on the I2C bus
*/
void I2CMaster_Stop()
{

//Enable STOP bit
do {

SSPCON2 |= PEN;
} while(!(SSPCON2 & PEN));

//Wait for completion
while(SSPCON2 & PEN)
;

}

/*
This routine writes a byte on the I2C bus and returns the ACK bit
*/
int I2CMaster_Write(int value)
{

//Wait until the buffer is free
while(SSPSTAT & BF)
;

Write:
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//Clear the write collision flag
SSPCON &= ~WCOL;

//Write byte to buffer
SSPBUF = value;

//Check for write collision
if(SSPCON & WCOL)
goto Write;

//Wait until the byte has been sent
while(SSPSTAT & BF)
;

//Return the value of the ack bit - FIXME: may not be set at this time?
if(SSPCON2 & ACKSTAT)
return 0;
else
return 1;

}

/*
This routine reads a byte on the I2C bus and send the ACK bit
*/
int I2CMaster_Read(int acknowledge)
{

int value;

//FIXME: check for overflow bit!

//Enter reception mode
do {

SSPCON2 |= RCEN;
} while(!(SSPCON2 & RCEN)); //FIXME: correct?

//Wait for data
while(!(SSPSTAT & BF))
;

//Reads content of SSP buffer - this also clears the buffer full (BF) bit
value = SSPBUF;

//Send acknowledge bit
if(acknowledge)
SSPCON2 &= ~ACKDT;
else
SSPCON2 |= ACKDT;
SSPCON2 |= ACKEN;

//Wait until acknowledge has been sent
while(SSPCON2 & ACKEN)
;

return value;
}



Page: 1PolDisk:Documents:EPFL:Projet Helico ASL:PICC Project:RS232.h
mardi 18 juin 2002 / 22:42
/************************************************************************************/
/* This header contains code for RS232 support on PIC 16F876 */
/* EPFL IMT/ISR/ASL - Pierre-Olivier Latour 2002 */
/* */
/* IMPORTANT NOTES: */
/* _ PICC RS232 routines DO NOT handle the case where the USART FIFO buffer gets */
/* full therefore the need for this file. */
/************************************************************************************/

/*
USART registers
*/
#byte RCSTA = 0x0018 //receive status and control register
#byte RCREG = 0x001A //receive register

/* SSP status register bits (SSPSTAT)

OERR: 1 -> Overrun error (can be cleared by clearing bit CREN)
0 -> No overrun error

CREN: 1 -> Enables continuous receive
0 -> Disables continuous receive

*/
#define OERR (1 << 1) //Overrun Error bit
#define CREN (1 << 4) //Continuous Receive Enable bit

/*
This routines checks if the OERR bit is set.
The OERR bit is set if the USART FIFO buffer is full and further reception is
disabled.
Since OERR is read-only, it has to be cleared by disabling and re-enabling
the CREN bit.
*/
void RS232_ClearOverRun()
{

int value;

if(RCSTA & OERR) {
//Disable receive
RCSTA &= ~CREN;

//Dummy read of the receive FIFO buffer to empty it
value = RCREG;
value = RCREG;

//Re-enable receive
RCSTA |= CREN;

}
}


