
UNIVERSITY OF CINCINNATI

Date:

I, ,

hereby submit this original work as part of the requirements for the degree of:

in

It is entitled:

Student Signature:

This work and its defense approved by:

Committee Chair:

11/9/2010 710

20-May-2010

Mark P McCrate

Master of Science

Mechanical Engineering

Modern Mechanical Automata

Manish Kumar, PhD

Ernest Hall, PhD

Ronald Huston, PhD

Kelly Cohen, PhD

Karen Davis, PhD

Manish Kumar, PhD

Ernest Hall, PhD

Ronald Huston, PhD

Kelly Cohen, PhD

Karen Davis, PhD

Mark P McCrate

MODERN MECHANICAL AUTOMATA

A thesis submitted to the

Department of Mechanical Engineering

College of Engineering and Applied Science

UNIVERSITY OF CINCINNATI

Division of Research and Advanced Studies

in partial fulfillment of the requirements for the degree of

Master of Science

2010

by

Mark P McCrate

BSME University of Cincinnati 2006

Committee Chair: Manish Kumar, PhD.

ii

Abstract

Robots are becoming evermore ubiquitous. Their design requires combining many

engineering specializations. Initially, robots were tele-operated arms. Then they advanced into

automated assembly and material handing machines. However, more recent efforts are focused

on making companion robots that look and act like humans. This thesis presents an effort to

make a Modern Mechanical Automaton capable of drawing pictures that can be used to teach

kinematics and dynamics and also for K-12 outreach. These functions are accomplished by

adding a touch sensor and microphone to an existing five degree of freedom robot, then writing a

fuzzy logic controller to direct movements based on Graphical User Interface input. This work

has been demonstrated in many trials. Experience from these trials suggests people of all ages

find the user interface easy to understand. Beyond the engineering accomplishments of solving

equations, building a fuzzy controller and having a physically realized system, the broader

impacts are creating an easily expandable system and successful outreach to bolster the National

Science Foundation’s Science, Technology, Engineering and Mathematics initiatives.

iii

iv

Acknowledgments

I would like to thank Dr. Manish Kumar for agreeing to be my committee chair. His advice has

helped me finish this thesis. I would like to thank my committee members Drs. Ron Huston,

Kelly Cohen and especially Karen Davis. They have taught me a great deal and Dr. Davis has

been a constant source of inspiration. Thanks also to Dr. Ernest Hall for allowing me work in the

robot lab. I have met many good people there over the years.

I need to thank many family and friends for their years of love and support.

I want to thank to Mark Aull and Adam Gerlach and for their help with MATLAB and Dr.

Herbert Halpern for his help with Mathematica. Many thanks to Hema Kasture for her help with

the manuscript. Thanks to Jennifer Baldwin for her ideas related to this work and to Toyota for

their support.

v

Contents

Abstract ... ii

Acknowledgments ... iv

List of Figures ... vi

List of Tables .. viii

Chapter 1 Introduction ..9

Motivation: ...9

General objective: ... 10

Specific objectives: ... 10

Research Methodology: ... 11

Contributions: ... 11

Overview .. 12

Chapter 2 Literature Review.. 13

Early Robots ... 13

Current Challenges .. 14

Chapter 3 Hardware Description ... 17

Chapter 4 Special Kinematics .. 22

Forward Kinematics .. 26

Inverse Kinematics .. 28

Chapter 5 Communication Protocols and Factory Software ... 37

Teach Control ... 37

Serial Communication ... 41

Chapter 6 New User Interface and Software .. 46

Demo Program .. 46

Demo Program Functions .. 51

Chapter Summary ... 53

Chapter 7 Fuzzy Logic Control ... 54

Methodology and Materials ... 54

Audio: Setup and Acquisition .. 55

First Pass Controller .. 56

Fuzzy Controller ... 56

Chapter Summary ... 61

Chapter 8 Contributions and Recommendations .. 63

Contributions .. 63

Recommendations ... 64

References .. 66

Appendix A Generalized Kinematics... 74

Forward Kinematics based on Denavit-Hartenberg Parameterization 74

Inverse Kinematics derived using Artificial Neural Network Fuzzy Inference 82

Summary ... 92

vi

List of Figures

Figure 2-1 Chahakobi Ningyo (Tea Serving Doll) (Boyle, 2008c) used with permission (McCrate

& Boyle, 2010) ... 13

Figure 2-2 Yumihiki Doji' (archer doll). (SHOBEI Tamaya IX, 2008) used with permission

(McCrate & Boyle, 2010). ... 13

Figure 2-3 Automaton in The Invention of Hugo Cabret. .. 14

Figure 3-1 Robot arm. .. 18

Figure 3-2 Motherboard, where points of interest are highlighted. .. 19

Figure 3-3 Pen with embedded touch sensor/limit switch. .. 21

Figure 4-1 Initialization and Calibration Grid from Microbot. .. 23

Figure 4-2 (above) Microbot supplied Kinematic Model of the Teachmover Arm.................... 25

Figure 4-3 Microbot definition of pitch and roll angles. .. 25

Figure 4-4 (above) Microbot supplied side view of kinematic model. 27

Figure 4-5 Microbot supplied top view of kinematic model. ... 28

Figure 4-6 (above) Roll vector identifying wrist/hand at 0º. .. 29

Figure 4-7 Microbot supplied images showing turnbuckle orientation at 0º. 29

Figure 4-8 New top view of the arm. .. 30

Figure 4-9 Microbot supplied top view of arm. ... 31

Figure 4-10 Microbot supplied side view of hand triangle used to find Rw and Zw. 32

Figure 4-11 Shoulder-Elbow-Wrist triangle. ... 32

Figure 4-12 Microbot picture of the geometry that produces a variable hand length. 35

Figure 4-13 Hand Length vs Opening ... 36

Figure 5-1 Handheld teach control. (Almost actual size.) ... 38

Figure 5-2 Microbot provided Programming Worksheet, via the manual F.13. 40

Figure 5-3 Microbot flowchart of their Block Stacking Program, via the manual 6.36. 41

Figure 5-4 Serial communication solution. ... 42

Figure 5-5 Enhanced block stacking program. .. 44

Figure 5-6 Expansion of the grip() function used in Figure 5-5. .. 45

Figure 6-1 Menu used to determine images or drawing type. .. 46

Figure 6-2 Circle .. 47

Figure 6-3 Square ... 47

Figure 6-4 Fish ... 47

Figure 6-5 Circle .. 47

Figure 6-6 Square ... 47

Figure 6-7 Fish ... 47

Figure 6-8 Heart ... 48

Figure 6-9 House .. 48

Figure 6-10 Heart ... 48

Figure 6-11 House .. 48

Figure 6-12 Menu to establish units. ... 49

Figure 6-13 Menu to choose roll frame ... 49

Figure 6-14 Connect-the-dots interface window. .. 49

Figure 6-15 Example image, a palm tree! ... 50

Figure 6-16 Menu to define current position. .. 51

vii

Figure 7-1 Representative audio hardware. ... 55

Figure 7-2 Audio, input variable, membership functions. ... 56

Figure 7-3 Serial speed, input variable, membership functions. .. 57

Figure 7-4 NewSerialSpeed, output, membership functions. ... 57

Figure 7-5 Fuzzy Rule base. Note number three is weighted less (0.5). 58

Figure 7-6 A Mamdani controller produces a nearly binary response surface. 59

Figure 7-7 A Sugeno controller produces a partially graduated response surface. 59

Figure 7-8 Consecutive Fuzzy runs oscillate about an RMS threshold. 60

Figure 7-9 Typical FFT of a slow run. .. 62

Figure 7-10 Typical FFT of a fast run. Notice the broad-band noise and spike ±1200 Hz. 62

Figure A-1 Link Coordinate Frames; all are right-hand; x = red, y = yellow & z = blue. 77

Figure A-2 Mathematica supressing the output T for a fully populated 6DOF manipultor. 80

Figure A-3 Mathematica warning produced while trying to simplilfy a “full T.”....................... 81

Figure A-4 anfisBASE error as reported by anfis. ... 85

Figure A-5 (above) Motor step error at membership funcs = 2 and epochs = 150. 86

Figure A-6 (above) Motor step error at membership funcs = 3 and epochs = 150. 86

Figure A-7 (above) Motor step error at membership funcs = 4 and epochs = 150. 87

Figure A-8 (above) Motor step error at membership funcs = 5 and epochs = 150. 87

Figure A-9 (above) Motor step error at membership funcs = 6 and epochs = 150. 88

Figure A-10 (above) Motor step error at membership funcs = 7 and epochs = 150. 88

Figure A-11 Time vs # of membership functions. ... 89

Figure A-12 Error vs # of epochs given 2 membership functions. ... 90

Figure A-13 anfisELBOW error reported by anfis. Notice the bump.. 91

Figure A-14 anfisWRIST error reported by anfis. Notice the bump. .. 91

viii

List of Tables

Table 1-1 2007-08 Senior Design Subgoals (Clark et al., 2008). ... 10

Table 4-1 Conversion factors between motor steps and revolute joint angles. 24

Table 4-2 Lengths of Teachmover Arm members. .. 26

Table 4-3 Summary of θ calculations. .. 34

Table 4-4 Constants of the varying hand length equation. ... 34

Table 5-1 Teachmover teach control command summary, via the manual F.3. 39

Table 5-2 Serial interface command summary, via the manual F.5. .. 43

Table 7-1 Tabular form of RMS data found in Figure 7-8. .. 60

Table A-1 Summary of Microbot Teachmover D-H parameters. ... 78

Table A-2 A sample of the training matrix.. 83

Table A-3 Optimal ANFIS parameters. .. 92

9

Chapter 1 Introduction

Motivation:

Robots are becoming evermore ubiquitous. Initially, robots were tele-operated arms.

Then designs advanced into automated assembly and material handling machines. However,

more recent efforts are focused on making companion robots that look and act like humans.

Many humanoid type devices have been developed. The earliest were cloth and bone,

were powered by wooden gear trains and served tea, mimed archers or performed other

functions. Automata of the late 19
th

 and early 20
th

 centuries were mostly metal, were driven by

springs, cams and followers and could pen a few lines of prose or draw a few pictures, at most.

Modern humanoid robots are all computer controlled and powered by hydraulic, pneumatic or

most often electric elements; elements are sometimes combined in the effort to make machines

that look, act and “think” like humans.

MIT is making robots that think like humans (C. Breazeal, 2000; C. Breazeal &

Scassellati, 2002; C. Breazeal, 2004). Nexi is one of their newest robot designs. It can read

people’s expressions and respond appropriately (Caplan, 2008). Toyota’s human-like Partner

robots can perform acts requiring high levels of coordination such as playing instruments. They

have publicly demonstrated trumpeting and playing all four strings of a violin (Kaneko, Harada,

Kanehiro, Miyamori, & Akachi, 2008; Kusuda, 2008). Honda produces one of the most

advanced humanoid bipeds. ASIMO can walk, run, climb up/down stairs and simultaneously

balance a tray of coffee or tea (Sakagami et al., 2002). Creating machines that are gauged on

their humanness, are able to compliment our motor skills and are accepted in places beyond the

factory floor is quite a mission for any engineer, scientist or psychologist.

Another mission for robot enthusiasts is to create a machine with artistic ability. Artistic

ability here refers to the ability to reproduce a work of art – from something as simple as a

geometric shape to something as intricate as a famous Henri Matisse or Picasso. During the

2007-08 academic year David Clark, Stephen Collins, Austin Ellis and Scot Watson, all from the

former Electrical and Computer Engineering and Computer Science department at the University

of Cincinnati, worked to build “The Picasso Printer,” a humanoid drawing robot, to fulfill their

senior design requirements; this thesis represents a continuation of and a divergence from their

10

work. Both projects share a common goal, “To make a digital machine that draws pictures,

much like the one described in the book The Invention of Hugo Cabret by Brian Selznick”

(Clark, Collins, Ellis, & Watson, 2008). The Picasso team also outlined several sub goals, see

Table 1-1. Much of their effort was spent building hardware from scratch. They generated

wonderful system design diagrams, technology specifications/standards, interface specifications

and test plans however before they could realize the goal time expired.

1. Design a control system that uses a microprocessor to control motors that move the arm

across the page and lift the pen to draw the picture.

2. Build the machine (control system and physical device) during the Spring Quarter in

order to implement and test our design.

3. Test and produce a final working art machine for use as a fundraiser.

Table 1-1 2007-08 Senior Design Subgoals (Clark et al., 2008).

This thesis serves to document a new approach to the Hugo/Picasso robot. Work begins

after identifying a robot that meets most of the physical requirements of a drawing robot.

Construction and programming details are provided. Results, in the form of equations, pictures

and demo data are given as well.

General objective:

Produce a robust robot capable of drawing pictures, that is easy to modify and can be

used as a collegiate or K-12 teaching tool.

Specific objectives:

A. Design hardware and an end effecter with the dexterity needed to draw pictures or

write.

B. Solve the equations of motion necessary to command end effecter positioning and

generalize them based on widely used industrial and academic standards.

C. Write software to make a robot draw both stored pictures and images created via user

input.

D. Stabilize all operations by building a flexible fuzzy controller to augment the stepper

motor technology.

11

E. Work with art students to make a costume or other covering to personify the robot

thereby making it look more like Hugo Cabret’s mechanical man.

Research Methodology:

All specific objectives require completing the set of tasks listed below:

A. Design an end effecter capable of providing feedback while grasping a drawing

utensil that is compatible with a Microbot Teachmover, the chosen robot base

platform.

B. Using trigonometry, geometry and kinematic decoupling to solve forward and inverse

kinematics analytically. Generalize these equations using matrices, Denavit-

Hartenberg parameterization and a fuzzy inference system.

C. Write functions to test communication, motion and feedback. Write software that

utilizes the analytic equations. Build a simple to understand GUI to benefit/aid user

experience/interaction.

D. Tune membership functions and define a rule base for a fuzzy controller.

E. Teach Jennifer Baldwin’s art students how to program Microbot Teachmover arms;

then, work with them to design a humanoid figure and costume to cover the arm.

Contributions:

Upon successfully completing the tasks listed these contributions are expected:

A. Having robust hardware with enough dexterity to draw. This should open the door to

many applications beyond the picture drawing detailed herein.

B. Closed form analytic solutions for the forward and inverse kinematics. These are

transformed into standardized matrix notation to provide a good base for future work.

C. A natural user interface providing an experience similar to connect-the-dots.

D. A new control method for Microbot Teachmovers.

E. Successful outreach, especially toward K-12 students, in order to bolster the National

Science Foundation’s Science, Technology, Engineering and Mathematics (STEM)

initiatives.

12

Overview

 Chapter 2 provides an overview of some entertainment robots both from antiquity and

modern times. Chapter 3 introduces the hardware structure that will be utilized. In Chapter 4

equations necessary to command a Teachmover are solved. Chapter 5 presents a brief overview

of factory Microbot Teachmover capabilities and user interfaces. Chapter 6 introduces the new

user interface for picture generation. Chapter 7 gives details of a fuzzy logic controller designed

to stabilize the robot’s speed. Chapter 8 is a summary of the contributions and some

recommended future work.

13

Chapter 2 Literature Review

Automata are defined as mechanisms that are relatively self-operating (Mish, 1995). In

this chapter, several previous generations of humanoid automata are examined. Focus will be on

current field robots, their end effectors, feedback/control systems and the task of translating an

image acquired through a GUI into a penned image. These topics capture the challenges

associated with building a drawing/writing robot.

Early Robots
Shannon Jaeger compiled a timeline listing significant robots (Jaeger, 2005) and

(Robot.2010) contains a slightly different timeline. They both trace the origin of robotic

movement back to the first centuries BC and AD as detailed in (Mansfeld, 1998). Over a

millennia later, Japanese Karakuri masters began crafting Karakuri Ninjyo – or person shaped

mechanism meant to trick or surprise – from cloth, bone and wood (Boyle, 2008a) (Boyle,

2008c) (Boyle, 2008b) (Law, 1997). These “robots” served tea, Figure 2-1, mimed archers,

Figure 2-2, or performed other functions (Kittel, 2008) (shinjiredfield, 2008).

Figure 2-1 Chahakobi Ningyo (Tea
Serving Doll) (Boyle, 2008c) used with

permission (McCrate & Boyle, 2010)

Figure 2-2 Yumihiki Doji' (archer doll).
(SHOBEI Tamaya IX, 2008) used with

permission (McCrate & Boyle, 2010).

14

Starting in the late 19
th
 and early 20

th
 centuries, automata were made from metal, were

driven by springs, cams and followers and could pen a few lines of prose or course line art,

Figure 2-3. Gaby Wood has written extensively on these century-old “robots” (Wood, 2002).

Figure 2-3 Automaton in The Invention of Hugo Cabret.

Current Challenges
Humanoid robot research is branching into emotional, voice and facial detection,

recognition and response as well as natural locomotion (C. Breazeal, 2000). Simultaneously,

robot researchers are trying to conquer the challenges related to locomotion, drawing, writing

and signature replication.

 In order to replicate signatures robots need dexterous end effectors. End effectors and

other grippers are tools attempting to replicate the dexterity of a human hand. The

aforementioned Karakuri tea serving dolls only had a single degree of freedom “platform” end

effecter. These days, many end effecter designs are available. Bos catalogs recent efforts in

robotic hand design (Bos, 2010). The report shows only four documented cases of grippers

exceeding 20DOF. However, a human hand has 25DOF and also provides valuable sensory

feedback.

15

 Feedback is the transmission of evaluative or corrective information about an action,

event or process to the original controlling source (Mish, 1995). The reaction force in all simple

machines is similar to feedback and every electronic sensor can be used for feedback as well.

Raymond Goertz patented the first electrical force feedback system (Goertz & Uecker, 1951).

Today, end effectors are equipped with force/torque, tactical, proximity and/or many other

sensors with resolutions approaching that of a human hand. The best writing and drawing robots

utilize force feedback in combination with advanced controllers.

 Controllers are built to change the behavior of a physical system while maintaining

stability. There are many controller types ranging from error reducing Proportional- Integral-

Derivative to advanced neuro-fuzzy logic controllers. A particular family of controllers, known

as “compliance” or “accommodation” controllers, is specifically designed for applications where

an end effecter must physically contact the environment (Mason, 1981), (Whitney, 1977).

Adibhatla explains compliance controller applications span from on-orbit rendezvous to

automobile body welding (Adibhatla, 2007). Wang et al. distinguishes between active and

passive compliance (W. Wang, Loh, & Gu, 1998). The demarcation they propose is:

Active compliance is controlling individual joint-servo stiffness by directly controlling

joint torque.

Passive compliance is the intrinsic mechanical structural compliance due to the finite

stiffness of the robot base, links, joint drive mechanism, grippers as well as the assembled

parts.

In this work, a spring-loaded “touch sensor” pen and approach function together form a passively

compliant system.

 Hogan introduces impedance control by further refining accommodation control.

Impedance control and techniques for control of manipulator behavior result in a unified

approach to kinematically constrained motion, dynamic interaction, target acquisition and

obstacle avoidance (Hogan, 1985a; Hogan, 1985b; Hogan, 1985c). Adibhatla neatly summarizes

Hogan’s three-part paper on the control of dynamic interaction between a manipulator and its

environment by writing: In part I, [Hogan] presents the theory of the mechanics of interaction.

In part II, he describes impedance techniques for computing the relationship between external

forces and displacements or velocities of a tool tip. In part III, Hogan presents an example to

illustrate the usefulness of impedance control. Spong et al. covers compliance, impedance and

16

other techniques for controlling joints individually in Robot Modeling and Control (Spong,

2006).

 When a sophisticated end effecter is instrumented with feedback sensors attached to a

properly tuned controller, the results can appear very life-like (Goldsmith & Worsdall, 2010)

(Eastern Cranial Affiliates LLC, 2009) even when operated remotely (Page, 2007). When the

goal is to copy an image or signature, the forward and inverse kinematics must also be solved.

Chapter 4 covers the derivation of inverse kinematics for the Microbot Teachmover and

Appendix A covers solving inverse kinematics in general. The next chapter starts to describe a

new attempt at a drawing/writing robot.

17

Chapter 3 Hardware Description

While many robot simulation environments exist, this work involves hardware because

the objective is to actually draw a physical picture. The first group at the University of

Cincinnati to attempt this project assumed commercial hardware did not exist that could meet the

required demands. Therefore, a major part of their effort was to design/build/test a custom robot.

Since that time a commercial option has been found. The present work utilizes Microbot

Teachmovers as the foundation on which locomotion and picture drawing is based.

This chapter will focus entirely on hardware. A very detailed hardware description exists

in the form of a user manual so this chapter will highlight key areas of the design and all

modifications necessary to ready the Microbot for drawing. After reading this chapter,

experimentalists should feel comfortable enough to modify and/or repair the hardware.

 Teachmovers are cleverly constructed. Mechanically they are just a few pulleys and

some aircraft cable; electrically, stepper motors spin pulleys once commanded by a Motorola

6502 microprocessor. Out of the box, Teachmovers, Figure 3-1, – or they will sometimes be

referred to as, robots, arms, Microbots or occasionally Auto – look like small Unimation PUMA

560s. In fact both 560s and Teachmovers are 5DOF arms and both use two fingers as the end

effecter. On Teachmovers a four-bar mechanism ensures the fingers remain parallel upon

approach in order to maximize gripping area. Small rubber pads glued to the fingers also

improve gripping ability. Above the gripper is a differential wrist joint. Using this gearing

scheme for the wrist makes pitching and rolling the fingers very easy though it requires

coordinating the L and R wrist gears. Between the wrist and elbow joint several sets of thin

aircraft cables are encased inside the sheet metal body. Constructing the body out of sheet metal

saves on cost and weight. Between the elbow and shoulder joint there is more cabling and the

only feedback sensor. The sensor is just a microswitch that acts as a tension indicator. Another

clever and interesting trait is that all motors and gear trains are mounted within the body. By

moving all motors into the body individual link load is lessened and lighter construction is

possible; also, balancing is easier and the moment of inertia is lessened since the second term of

the parallel axis theorem, I = Icm + mr
2
, is reduced as r is reduced. A modern example of a “wire-

operated system” with internally mounted actuators is demonstrated by the fourth Toyota Partner

18

Robot (Toyota Motor Corporation, 2003). One disadvantage of cable driven systems is they

typically have a limited payload capacity.

Since all the arm’s joints are revolute it is very important to keep cables properly

tensioned. Loss of proper adjustment is most commonly caused by one of two events: when a

user crashes the arm into a stationary object or by the cables tending to lengthen over time.

Fortunately, the engineers were perspicacious and built in user accessible tuning knobs.

Figure 3-1 Robot arm.

 The black rectangular box underneath the body is the Teachmover’s base, where the

power and Teach Control cables are located. Two DB-25 serial interface connectors provide a

means of communicating via a computer. Having two connectors gives users the ability to daisy

chain Microbots. Inside the base is where the motherboard is located, Figure 3-2.

19

Figure 3-2 Motherboard, where points of interest are highlighted.

A B

C

D

D

E

20

The biggest chip, on the motherboard, Figure 3-2, is the micro controller (A): an 8-bit

Motorola 6502 common in such devices as the original Nintendo NES, Commodore 64, several

Atari models and all Apple][computers. Aiding processing is external RAM (B). The manual

describes an adventurous memory hack that can double system memory if needed (C shows

memory mod addresser pin). Teachmovers are serial communication ready. Two chips enable

this RS-232 serial communication (D). Enhancing the platform even more is a set of built-in I/O

pins (E). Using these I/O pins, users can connect up to seven additional sensors and output up to

five bits of information. Here green and white wires connect to the “touch sensor.” The touch

sensor is a specially built spring-loaded pen, Figure 3-3, which runs simultaneously with the

approach function that is described in Chapter 6.

This succinct chapter introduces readers to the hardware platform. The information

herein provides enough detail that someone should be able to care for the hardware. Using this

chapter as a starting point one can modify Teachmovers and greatly increase functionality

beyond that which is described within these pages. In the next chapter, equations necessary to

effectively position the end effecter are derived and formatted such that they can be easily

programmed.

21

Figure 3-3 Pen with embedded touch sensor/limit switch.

22

Chapter 4 Special Kinematics

Understanding kinematics is a necessary condition for commanding a robot in an

intelligent and useful way. Kinematics is formally defined in Appendix A on Generalized

Kinematics. In the context of robotics, forward kinematics is defined as a process to determine

where in space a robot’s end effecter is given the robot configuration. Inverse kinematics can

then be defined as deriving the robot configuration based on where, in space, the end effecter is.

In this chapter, forward and inverse kinematics for the Microbot Teachmover Arm are

derived. Symbols used to describe joints, links and angles are based on those found in original

Microbot Teachmover manual.

In addition to notation, defining a coordinate system is necessary. Many coordinate

systems exist, the most common coordinate systems include: Cartesian, polar, cylindrical and

spherical. In this derivation two coordinate systems are used: Joint Coordinates and Cartesian.

Joint Coordinates are simply joint angles and include base, shoulder, elbow, pitch and roll. The

gripper is controlled by a motor but is not a positional DOF. Cartesian Coordinates are defined

by Microbot’s Initialization and Calibration Grid, Figure 4-1 and include X, Y, Z, Pitch (P) and

Roll (R). Using Figure 4-1, the direction for Z is defined by the right-hand rule. All of the arm’s

joints are revolute, therefore it is known as an articulated, revolute, elbow or anthropomorphic

manipulator (Spong, 2006).

23

Figure 4-1 Initialization and Calibration Grid from Microbot.

The relationship between different parts of the arm must be specified. In the following

explanation all specific information, concerning how each joint is articulated, how the joint

angles are measured and the distances between joints, comes directly from the manual.

The Greek letter theta, θ, is used to indicate joint angles. All θs, measured in degrees,

radians or revolutions, are proportional to motor steps, J, as shown in Table 4-1 (motor steps are

sent via computer commands). Two procedures ensure accurate conversions: 1) RESET the

position registers at an initial calibration position where all angles, θ, are zero 2) avoid crashing

into hard stops.

24

Motor Joint Steps/Revolution Steps per

Radian

Steps per

Degree

1 Base 7072 1125 19.64

2 Shoulder 7072 1125 19.64

3 Elbow 4158 661.2 11.55

4 Right Wrist 1536 241 4.27

5 Left Wrist 1536 241 4.27

Table 4-1 Conversion factors between motor steps and revolute joint angles.

Formulae to convert steps to angles are as follows. These account for the couple joints as well.

 Base � θ� � J� Shoulder � θ� � � J� Elbow � θ� � � J� Pitch, P � �0.5�J ! J"# � �0.5�θ ! θ"# Roll, R � 0.5�J � J"# � 0.5�θ � θ"#

Eqn 1

Eqn 2

Eqn 3

Eqn 4

Eqn 5

Where J is an internal position register value. Negative signs, while absent in the manual,

maintain the sign convention established in Figure 4-2 and Figure 4-3. Figure 4-3 shows the

definition of pitch and roll.

25

Figure 4-2 (above) Microbot supplied Kinematic Model of the Teachmover Arm.

Figure 4-3 Microbot definition of pitch and roll angles.

26

Link lengths, distance between each joint, are indicated by the constants H, L and LL as

shown in Figure 4-2 and Table 4-2. H is the distance from the table top to shoulder joint

centerline; L is the distance from the shoulder joint to elbow and elbow to wrist; LL is the

distance from the wrist to finger center, when the fingers are separated by 1.5 inches or are

roughly parallel.

Segment Length (inch) Length (mm)

H 7.68 195.0

L 7.00 177.8

LL 3.80 96.5

Table 4-2 Lengths of Teachmover Arm members.

Forward Kinematics

 Forward kinematics implies determining X, Y, Z, pitch and roll of the end point given

joint angles θ1 → 5. The end point is the center point between the two fingers and will hence forth

be the location of interest. Solving the forward kinematics is easy once all physical relationships

are defined. Start the forward solution by finding the height of the end point above the table, Z, a

visual aid is provided in Figure 4-4.

 Z � H ! L sinθ� ! L sinθ� ! LL sin�P# Eqn 6

Next, find the horizontal distance of the end point from the base, defined as the

intermediate value, RR. Again, a visual aid is provided in Figure 4-4 and Figure 4-5.

 RR � L cosθ� ! L cosθ� ! LL cos�P# Eqn 7

 Finally, calculate X and Y using the intermediate value RR.

 X � RR cosθ� Y � RR sin θ�

Eqn 8

Eqn 9

 P and R are defined in Eqn 4 and Eqn 5.

27

This concludes the forward kinematic solution derivation. It is based on basic geometry

and trigonometry. All notation is consistent with the manual. Eqn 1 → Eqn 9 in this thesis are

similar to Eqn 1 → Eqn 7 in the manual, however, in the next section, on inverse kinematics, the

derivation differs markedly.

Figure 4-4 (above) Microbot supplied side view of kinematic model.

28

Figure 4-5 Microbot supplied top view of kinematic model.

Inverse Kinematics

One definition for inverse kinematics is – the process of determining the parameters of a

jointed flexible object (a kinematic chain) in order to achieve a desired pose (Inverse

kinematics.2010). This section will demonstrate one method for calculating the inverse

kinematics. However, before beginning, a few more physical relations need to be defined.

 “In practice it is difficult to distinguish between positive and negative roll angles (i.e.

±90º) by looking at the hand” according to Appendix D page 12 (Microbot, 1984). To eliminate

ambiguity, the direction of the roll vector is marked with a bull’s-eye, according to the

convention commonly used to indicate a vector emanating from a surface. Figure 4-6 shows the

bull’s eye, on top of the hand, which is visible when the wrist is oriented at 0º. 0º corresponds to

the orientation when the wrist cable turnbuckles are aligned, Figure 4-7.

29

Figure 4-6 (above) Roll vector identifying wrist/hand at 0º.

Figure 4-7 Microbot supplied images showing turnbuckle orientation at 0º.

 Certain applications, such as playing games, drawing, sliding objects, assembling

structures or removing a peg from a hole, require precise and often linear movements. In these

cases it is “sometimes [...] useful to express “roll” with respect to [the] Cartesian frame rather

than with respect to the arm” as suggested in Appendix D page 14 (Microbot, 1984). The

manual suggests setting P = –90º (hand pointed down) as a reference position and measuring

“Cartesian roll” with respect to the x-axis, as is usual. The Cartesian roll convention used here

30

differs from that described in the manual, the current convention is shown in Figure 4-8. In the

figure: pitch = –90º, roll in Cartesian frame ≡ R’ and roll with respect to the arm ≡ R.

Figure 4-8 New top view of the arm.

 Writing a single roll equation, valid for both the arm and Cartesian frames, is made

possible by introducing “special” variable R1 in Eqn 10.

 roll � R ! R1 , θ� Eqn 10

Where R1 = 1 if roll is with respect to Cartesian frame

R1 = 0 if roll is with respect to the arm frame

 When R1 = 1 the Cartesian roll reported by Eqn 10 is visualized by projecting the vector

in Figure 4-6 into the X-Y plane and measuring X to Y as is usual. Unfortunately, at high pitch

and roll angles the simplicity of Eqn 10 breaks down.

 These new physical relations aid in solving the inverse kinematics. Solving the inverse

kinematics is determining joint angles θ1 → 5 given X, Y, Z, pitch and roll of the end point.

 Start the inverse solution by finding the base angle, θ1 and radius vector, RR, Figure 4-9.

31

Figure 4-9 Microbot supplied top view of arm.

 RR � -x� ! y�

θ� � tan0� 1yx2

Eqn 11

Eqn 12

Next, find θ4 and θ5 from P and R, pitch and roll, respectively by using Eqn 4 and Eqn 5.

Then substituting in Eqn 10 makes:

 θ" � �P � R ! R1 , θ� θ � �P ! R � R1 , θ�

Eqn 13

Eqn 14

 Then work back from the coordinates of the end point to those of the wrist. Letting Re

and Ze be the end point coordinates, calculate the wrist coordinates, Rw and Zw respectively,

using Eqn 15 and Eqn 16 or Figure 4-10. Distances in Figure 4-10 are measured vertically along

the z-axis and horizontally along the radius from the base (r-axis).

32

Figure 4-10 Microbot supplied side view of hand triangle used to find Rw and Zw.

 R3 � R4 � LL cos P Z3 � Z4 � LL sin P

Eqn 15

Eqn 16

 Finally, find θ2 and θ3, the shoulder and elbow angles, respectively. Steps for this differ

markedly from the manual’s derivation. Many new variables are defined to aid the derivation. A

single picture, Figure 4-11, explains the new variables and how to obtain answers graphically.

Figure 4-11 Shoulder-Elbow-Wrist triangle.

33

 New variables introduced in Figure 4-11 include:

r0 – distance from the shoulder to wrist, same as rw

z0 – height of wrist above the shoulder, Zw – H

b – base of congruent right triangles formed by bisecting the isosceles shoulder-

elbow-wrist triangle

α – one angle of the congruent right triangles with shoulder-elbow as hypotenuse

β – angle of the shoulder-elbow-wrist isosceles triangle above the horizontal

 Using these new variables solve for θ2 and θ3 as follows. Step one, solve for b noting it is

part of the hypotenuse of a right triangle.

b � -r5� ! z5�2
Eqn 17

 Step two, solve for β noting it is part of the same right triangle as b.

β � tan0� 9z5r5:
Eqn 18

 Step three, solve for α, having solved for b and knowing l, a.k.a. L from Table 4-2.

α � cos0� 9bL:
Eqn 19

 Careful inspection of Figure 4-11 shows θ2 and θ3 are composed of α and β

 θ� � α ! β θ� � α � β

Eqn 20

Eqn 21

 Note that θ3 was previously defined as the angle of the elbow above the horizontal hence

the sign must be changed when coding.

34

 Table 4-3 contains a summary of this derivation. Solving the inverse kinematics this way

is simple if not general. The next section covers one additional consideration used when doing

high precision work.

Θ1 θ� � tan0� 1yx2

Θ2 θ� � α ! β

Θ3 θ� � α � β

Θ4 θ" � �p � r ! r1 , θ�

Θ5 θ � �p ! r � r1 , θ�

Table 4-3 Summary of θ calculations.

Further Consideration

 Hand length, LL, actually varies slightly with hand opening, see Figure 4-6, so the value

given in Table 4-2 is not a constant. Though the variation is small, it may be critical. “The hand

length, LL, may be expressed as the sum of a fixed length, L1, and a varying length that depends

on hand opening, G” according to the manual Appendix D page 26 (Microbot, 1984).

LL � L� ! =L�� ! �G � G5#�5

Eqn 22

 Where hand opening, G, may be converted to motor steps and vice-versa by using

proportionality constant: 371 steps/inch or (14.6 steps/mm).

Constant Empirical (inch) Metric (mm)

L1
 2.097 53.3

L2 1.7 43.2

G0 1.52 38.6

Table 4-4 Constants of the varying hand length equation.

35

 In Eqn 22 and Table 4-4 the value of L1 and the denominator of 5 are different than those

in the manual. Some adjustments are needed to ensure maximum possible reach and realistic

length variation. The geometry that produced the variation is shown in Figure 4-12. Results of

the heuristically arrived at modified values are shown in Figure 4-13.

Figure 4-12 Microbot picture of the geometry that produces a variable hand length.

36

Figure 4-13 Hand Length vs Opening

Table 4-3 contains all the equations necessary for inverse kinematics. The derivation is

based on the principles of kinematic decoupling covered in (Spong, 2006), simplified in the

Teachmover manual and further simplified by the author. Figures and explanations have been

included to aid the readers understanding. In Appendix A, these equations are derived using

matrix math and formatted using Denavit-Hartenberg parameterization, which is understood by a

large group of mechanical engineers. The communication protocols and factory software will be

dealt with in the next chapter.

80

82

84

86

88

90

92

94

96

98

0 10 20 30 40 50 60 70 80

Le
n

g
th

(m
m

)

Opening (mm)

Hand Length vs Opening

LL max LL Original

37

Chapter 5 Communication Protocols and Factory Software

This chapter provides background into a Microbot Teachmover’s communication

protocol and factory software. It touches on all the commands necessary to interface a basic

drawing program.

Generally, each robot company creates their own robot communication protocol or

language; for example industrial robot manufactures such as Epson, Fanuc, Kuka and Panasonic

have their proprietary control software. Machine tool makers such as Fanuc and Siemens have

packages that work well across many physical platforms but are often black boxes, which cannot

talk to each other. Printers are much closer to universality. Manipulating paper, toner and ink in

most modern printers is the direct result of obeying industry standard software definitions such

as post-script (PS) or printer-command-language (PCL). Teachmovers come standard with two

protocols: one that responds to Teach Control buttons presses, and another for RS-232 serial

linking. After finishing this chapter, users will be familiar with both.

Teach Control

Most users interface with Teachmovers using the hand-held Teach Control, as shown in

Figure 5-1. Users simply press buttons to move the joints others activate “mode” to enable the

control functions and then write simple programs. Available control functions are listed and

described in Table 5-1.

38

Figure 5-1 Handheld teach control. (Almost actual size.)

39

COMMAND FUNCTION SYNTAX/DETAILS

CLEAR Erased entire program To activate, hold down

MODE key & press CLEAR.

FREE Turns off all motor currents. Enables manual positioning.

No program steps are created.

GRIP Closes the gripper. Builds up 1 pound of grip

force. Moves the hand motor

32 half-steps past the point

where grip switch closes.

JUMP*

* Should not be used.

Conditional (or unconditional)

branching.

Two numerical entries (press

MODE key b/w):

1
st
 entry-jump condition:

0: grip switch open

1 → 7: user input bit

8: never OR 9: always

2
nd

 entry: step to jump to.

MOVE Activates joint-control (arm

motion) keys.

Like train only does NOT:

change internal position

registers; allow positions to be

recorded; make program steps.

MODE Stops arm. Exits: TRAIN, MOVE and

ENTER modes.

OUT Designates which output bit to

turn on.

Two numerical entries (press

MODE key b/w):

1
st
 entry: 0: MODE light

1 → 5 user output bits

6: TRAIN light

7: RUN light

8: ENTER light

2
nd

 entry: 0 or 1 for lights off

or on, respectively.

PAUSE Pauses arm for # seconds Numerical entry 0 → 255.

POINT Sets program pointer to # step Numerical entry.

RUN Runs current program. If running, stops at end of

current step.

SPEED Sets speed of arm motion. 0 (slowest) to 15 (fastest).

STEP Do current prgm, step by step. Moves arm to next position.

TRAIN Activates joint-control (arm

motion) keys.

Press REC for ea position to

be saved. REC overwrites

current step and increments

pointer. Power cycle = train,

pointer and internal position

registers = 0.

ZERO Zeros sequence pointer and

internal position registers.

To activate, hold down

MODE key & press ZERO.

Table 5-1 Teachmover teach control command summary, via the manual F.3.

40

Writing trial programs using the commands listed in Table 5-1 is easy. For example, the

program shown below moves each joint a few degrees to give the impression the robot is

waving. Upon completing Step 7 the green RUN light should be lit and Auto will repeat

oscillations in each joint until interrupted or powered off.

1. Press TRAIN key

2. Swivel the base by pressing one of the B keys.

3. Press the REC key.

4. Swivel the base back past the starting point by pressing the other B key.

5. Press the REC key.

6. Repeat steps 2 → 5 for each remaining joint S,E,P,R,G.

7. Press the MODE key and then the RUN key. (The RUN key is physically

the same as the REC key once the mode modifier is activated.

While the trial program is useful, more involved programs often need to be written out or

recorded on paper prior to entry. Microbot includes a convenient “Programming Worksheet”

where someone can write out their programs, Figure 5-2. More complex programs, such as

Microbot’s Block Stacking program, require flow charts, Figure 5-3. Program complexity and

therefore size can quickly out-grow the available onboard RAM. At this point, users are forced

to interface Teachmovers with a computer. By interfacing to a computer a whole new set of

command and features are made available as will be explored in the following pages.

Figure 5-2 Microbot provided Programming Worksheet, via the manual F.13.

41

Figure 5-3 Microbot flowchart of their Block Stacking Program, via the manual 6.36.

Serial Communication

Communicating with this robot via serial requires some setup as serial devices are not

generally plug-and-play. Exact communication protocol is covered by the Teachmover manual

in Chapter 5 on “Electronics and Interfacing” and Chapter 7 on “Operation from a Host

Computer” (Microbot, 1984). One starts by setting a baud rate and deciding if multiple robots

are to be linked. Settings such as data format, interface signals, opening ports and testing the

configuration are static and well documented. For this thesis, one Teachmover with the max

baud rate of 9600bps and no flow control is used. To test the configuration an @CLOSE

command is sent down the pipeline via HyperTerminal then a response will be issued: 0 = bad

syntax, 1 = ok and 2 = stopped

42

Wiring is a critical part of proper setup. A null modem is vital to successful serial

communication interfacing. Figure 5-4 shows the serial cabling. Standard DB-9 from a host

converts to DB-25, passes through a surge protector then the null modem.

Figure 5-4 Serial communication solution.

Table 5-2 provides a listing the serial interface commands.

43

COMMAND FUNCTION SYNTAX/DETAILS

1) <CR> = Carriage Return

2) Arm returns [0<CR>] if command has syntax error, [1<CR>] after command is exe and

[2<CR>] if STOP button is pressed before completing exe (STEP and CLOSE only)

@ARM Can change recognition

character from @ to anything

@ARM <CHAR> <CR>

where char is any but <CR>

@CLOSE Close gripper until grip switch

is on.

@CLOSE <SP> <CR> where

SP = optional speed value

@DELAY Inserts a delay b/w TX chars @DELAY <N> <CR> where

N is heuristically determined.

@QDUMP Reads current program from

RAM

@QDUMP <CR> Returns

char string for ea program

step. See Ch 7 Table 9.

@QWRITE Writes a program step to

RAM

@QWRITE

<N>,<L1>,...<L7> <CR>

where N is line number.

@READ Reads internal position

register values, gives last key

pressed and input bit values.

@READ <CR> returns

<K1>...<K6>,<I> <CR>

where K = pos register and I =

Last Key *256 + Input Byte,

see App F.5

@RESET Zeros the internal position

registers and turns off motor

current.

@RESET <CR>

@SET Sets arm speed and activates

joint control keys and teach

control.

@SET <SP> <CR> where SP

= optional speed value. Ctrl

returned to host when REC or

MODE key pressed.

@STEP Sets arm speed, moves joints

and sets output bits.

@STEP <SP>,

<J1>...<J6>,<OUT><CR>

where SP = optional speed

value.

J1-J6 = Motor half-steps base,

shoulder, elbow, R wrist, L

wrist and hand respectively,

see App F.5 for more details.

OUT = Opt decimal # whose

binary equivalent specifies

output bits (App F item G).

Table 5-2 Serial interface command summary, via the manual F.5.

With the new set of serial interface commands writing more sophisticated programs is

possible. To demonstrate the basics of serial programming parts of an enhanced block stacking

program, written in a MATLAB script, are shown in Figure 5-5. Notice in each step uses one or

44

several of the commands listed in Table 5-2. Figure 5-6 shows the grip function, which also

uses several of the commands listed in Table 5-2. grip is integral to block stacking and serves a

dual purpose: it measures and grasps blocks. By combining commands and utilizing the

computer’s memory, actions such as measuring, stacking blocks and graceful error handling are

possible. Coding like this is only possible once users have graduated to the software

programming environment and are talking to Teachmovers via serial commands. A video

showing the enhanced block stacking program in action is available online (McCrate, 2009).

fopen(micro); % Open COM port

% zeros the position registers
cmd = sprintf('%cRESET',arm);
fprintf(micro,cmd);
[tline,count,msg] = fgetl(micro);

% visit each block and measure
for ii = 1:3 % 3 blocks will be measured

[...]

% measure block size

[tline,count,msg,b(ii)] = grip(arm);
if tline == '2', break, end;
[...]

end

[s,index] = sort(b,'descend');

for ii = 1:length(s)
 stack(ii) = sum(s(1:ii)); % height of n blocks
end

ii = 2; % start stacking from the 2nd largest block

% visit ~each block in decending order
while (ii <= length(s)) && (s(ii) > 10) % blocks exist & are > 10 mm
 [...]
end

% move to home
[tline,count,msg] = pabs(arm,home);
if tline == '2', break, end;

fclose(micro);

Figure 5-5 Enhanced block stacking program.

45

function [tline,count,msg,mm] = grip(arm);

% grip(arm)
% mimics teach control grip functionality = CLOSE - 32 hsteps
% returns std comments AND block size

global micro; % make global micro available to this function
global serialsp % make global serialsp available to this func

% close the gripper
cmd = sprintf('%cCLOSE',arm);
fprintf(micro,cmd);
[tline,count,msg] = fgetl(micro);
if tline == '2', return, end;

% build up 1 lb of force by squeezing 32 hsteps
[cmd, errmsg] = sprintf('%cSTEP %i %i,%i,%i,%i,%i,%i,

0',arm,serialsp,0,0,0,0,0,0);
fprintf(micro,cmd);
[tline,count,msg] = fgetl(micro);

% read position registers
cmd = sprintf('%cREAD',arm);
fprintf(micro,cmd);
[tline,count,msg] = fgetl(micro);
if tline == '2', return, end;
% reads and formats data sent after issuing read cmd
[c,count,msg] = fscanf(micro,'%i,%i,%i,%i,%i,%i,%i');

% use hand and elbow registers to calc object width
mm = (c(6)-c(3)) / 371 * 25.4;

Figure 5-6 Expansion of the grip() function used in Figure 5-5.

This concludes the chapter on a Teachmover’s communication protocols and factory

software. It opened with an explanation of the hardware interface and pseudo code for a short

joint oscillating trial program. Focus then shifted to serial interfacing. Code for an advanced

block stacking program is shown and this program is demoed in a short video. This code and

block stacking demo are important because they showcase all the commands necessary to

interface a basic drawing program. The next chapter explores how to build the drawing

HMI/GUI using MATLAB.

46

Chapter 6 New User Interface and Software

To make Microbot Teachmovers pen images requires hardware and software capabilities

beyond those on the factory platform. Improvements to the hardware are covered in other

chapters. This chapter covers improvements to the software, specifically the user interface (UI).

The new software-based UI, or HMI/GUI, allows users to make Teachmovers behave similar to

the automaton in The Invention of Hugo Cabret, however some improvements are made that

enable users to pen random images as well. This chapter introduces the capabilities and

improvements of the new UI system by presenting them in a demonstration program.

Demo Program
Users begin the demo, and therefore the act of drawing, by running a program coded with

MATLAB. When the demo program starts, it presents users with a popup menu, Figure 6-1.

The menu contains a list of preprogrammed images. To initiate drawing, users pick what image

they want from the menu. This action’s analogue from a century ago would be replacing a set of

cams and/or gear trains and winding springs. Like many drawing automata of old, this Microbot

based automaton can draw several images. Only a few elementary shapes are used for in the

demonstration; these include a: circle, square, fish, heart and house, as shown in Figure 6-2 to

Figure 6-11, respectively. Images in the left column were created via the sixth and last option

listed in the menu below. Images in the right column were drawn by a microbot.

Figure 6-1 Menu used to determine images or drawing type.

47

Commanded via MATLAB

Figure 6-2 Circle

Figure 6-3 Square

Figure 6-4 Fish

Drawn by a Teachmover

Figure 6-5 Circle

Figure 6-6 Square

Figure 6-7 Fish

-50 -40 -30 -20 -10 0 10 20 30
-40

-30

-20

-10

0

10

20

30

40

-50 -40 -30 -20 -10 0 10 20 30 40 50
-50

-40

-30

-20

-10

0

10

20

30

40

-50 -40 -30 -20 -10 0 10 20 30 40 50
-50

-40

-30

-20

-10

0

10

20

30

40

48

Commanded via MATLAB

Figure 6-8 Heart

Figure 6-9 House

Drawn by a Teachmover

Figure 6-10 Heart

Figure 6-11 House

Unlike automata built around the turn of the 20
th

 century, users of this Teachmover-based

automaton can create their own drawing, using a connect-the-dots interface. Clicking “Create

Your Own” from the first menu, Figure 6-1, activates the connect-the-dots menus. The second

menu, Figure 6-12, is used to establish units, giving users a quantitative feel for size. The third

menu, Figure 6-13, is used to establish roll frame. Roll frame is described in Chapter 4 and it has

little bearing on penned images.

-40 -30 -20 -10 0 10 20 30 40 50
-50

-40

-30

-20

-10

0

10

20

30

40

-50 -40 -30 -20 -10 0 10 20 30 40
-50

-40

-30

-20

-10

0

10

20

30

40

50

49

Figure 6-12 Menu to establish units.

Figure 6-13 Menu to choose roll frame

After answering the questions in menus two and three, above, a new much larger figure

window opens, Figure 6-14, below, which has been made to look like MATLAB’s Interactive

Plotting example. People are charged with creating their desired image using the large figure

window. Directions are given at the top of the screen and simultaneously in the MATLAB

Command Window. The directions read, users left-click a mouse to create points and right-click

to complete the process. Figure 6-15 shows an example image.

Figure 6-14 Connect-the-dots interface window.

50

Figure 6-15 Example image, a palm tree!

Before the Teachmover will commence drawing its current position or pose must be

entered into the program. Generally this is accomplished by selecting a location from one last

menu, Figure 6-16. Three positions are very common: Cal Pt, Cal Pt-- and Home. Cal Pt is the

calibration point as shown in Figure 4-1. This is the best place to reset the position registers after

major slipping or a hard crash. Cal Pt-- is the Cartesian point (X,Y,Z) = (2,0,3) inch. In this

position the pen is removed from the canvass and the arm is retracted, giving any audience a

clear view of all freshly finished art work. Home is where all joint angles are zero: at this point

the arm is fully extended marking a good opportunity to exchange the drawing utensil. Users are

tasked with ensuring the robot is in one of these three positions prior to pushing the proper menu

button. The next section contains a description of some of the demo program code.

51

Figure 6-16 Menu to define current position.

Demo Program Functions
Here, in this section, is a list of functions that directly support the drawing portion of the

demo program.

Grip.m
Grip is written to mimic the Teach Control function named grip. First, it closes the gripper until

the close switch is activated. Then it measures the block. Finally, it builds up one pound of grip

force by squeezing an additional 32 half steps.

function [tline,count,msg,mm] = grip(arm);
% grip(arm)
% mimics teach control grip functionality = CLOSE - 32 hsteps
% returns std comments AND block size

Prel.m
Prel basically duplicates the Teach Control buttons. It will move the motors a commanded

number of half-steps.

function [tline,count,msg] = prel(arm,p)

% Position Relative (uncouples joints)
% prel(arm,[p])
% where p = B,S,E,P,R,G
% motor steps NOT angles
% make sure ONLY integers are sent

Pabs.m
Pabs is a function written to “force” the motors to turn until the internal position registers match

the commanded values.

function [tline,count,msg] = pabs(arm,p)
% Position ABSolute
% pabs(arm,p)
% p = [base,shoulder,elbow,R wrist,L wrist,grip]
% motor steps NOT angles

52

Cart_disp.m
Cart_disp stands for Cartesian Display. This function reads the Teachmovers internal position

registers then calculates the forward kinematics before returning the robots current configuration.

function [disp] = cart_disp(arm)

% [disp] = cart_disp(arm);
% Displays current X,Y,Z,P,R,G

% X,Y,Z,P,R,G are Cartesian Coordinates then Pitch, Roll and grip width

Prel_cart.m
Prel_cart stands for Position Relative Cartesian. As the name implies, this function repositions

the arm in the Cartesian frame by taking Cartesian inputs, e.g. move +Y by 3mm.

function [tline,count,msg] = prel_cart(arm,pos)

% Cartesian coordinate based Relative positioning
% prel_cart(arm,[pos])
% where pos = B,S,E,P,R,G as shown on the Teach Control

Cart_cmd.m
Cart_cmd stands for Cartesian Command. This function calculates the inverse kinematics and

required motor steps to move from home (where all angles and registers are zeroed) to the

desired pose.

function [cmd] = cart_cmd(pos)

% Commanded motor steps needed to go from home (encoders = 0) to pos
% [J1,J2,J3,J4,J5,J6] = cart_cmd([pos]);
% pos = [x,y,z,p,r,g];
% J = [base,shoulder,elbow,R wrist, L wrist,grip]

Apporach.m
Approach is a written to trace unknown manifolds using the “touch sensor” shown in Figure 3-3.

function [tline,count,msg] = approach(arm);
% approach(arm)
% v.1 removes pen from paper then moves -z until the "touch sensor" trips
% v.3 rise until not touching, then touch, then back off one “step”
% returns std comments

Decode.m
The decode function interprets the last integer returned after issuing a READ command. This

integer contains two types of information: the state of the Input Pins and the last Teach Control

button that was pressed.

function [bits,currentkey] = decode(c);

% decodes the last integer of READ
% things differ from the manual e.g. inputs are grounded not pushed high

% their eqn I = LastKey*256 + Input Byte
% my eqn I = CurrentKey*256 + 255 - 2^Input Bit

53

% bits are NORMALLY HIGH
% bits = [0,1,2,3,4,5,6,7]
% where 0 = closed indicator and 1-7 = user inputs

% current key, see table below

1 = train 8 = step

2 = pause 9 = point

3 = grip 10 = jump

4 = out 11 = clear

5 = free 12 = zero

6 = move 13 = speed

7 = stop 14 = run

This section shows the quantity and format of each function directly responsible for

drawing. The theory supporting these functions can be found in Chapter 4 and Appendix A. All

these functions are only called once the menus and other image acquisition portions of the demo

program are completed.

Chapter Summary
In this chapter the new UI is introduced, as a demo program. The MATLAB based

interface, software written to generate the motion commands and functions implemented in the

process are all introduced as well. This chapter can serve as a stand-alone user manual for the

thesis demonstration. The next chapter outlines how to build a fuzzy logic controller for the

Microbot Teachmover. The fuzzy controller serves a dual role: it is vital to increasing the mean

time between errant drawings and increases real-world throughput.

54

Chapter 7 Fuzzy Logic Control

Teachmover by Microbot is an economical, mechanically sound academic and industrial

teaching tool however its 1980’s era motion control system goes unstable quite often at high

speeds. To eliminate instability a new controller was designed in MATLAB® using their Fuzzy

Logic Toolbox™. To aid the fuzzy controller with observability, several sensors are added to

Auto. Using input from these sensors, membership functions and a control rule base are tuned

heuristically. When enabled the new fuzzy controller augments speed commands resulting in

very fluid motion.

The University of Cincinnati has, in their Robotics laboratory, several Microbot made

Teachmover robots. They are very light, being constructed mostly from sheet metal and aero-

space cabling actuated by stepper motors. Unfortunately, the robots’ Achilles’ heel is power and

stability. At high speed or under load/resistance, motors vibrate violently and the pulse counted

position registers lose track of position. Of course, upgrading to powerful servo motors can

solve these problems however the cost, power and time involved are all unwanted. Fortunately,

any trained observer can detect the unstable and marginally stable states biologically using audio

or tactical input. One can quantify these states using a microphone or accelerometer. Realizing

and recreating our inherent ability to detect and attenuate speed based on incomplete qualitative

data inspired and guided the current work.

Methodology and Materials
Implementing the fuzzy controller required 9 phases:

Part 1 Explore MATLAB’s Data Acquisition Toolbox

Part 2 Acquire accelerometer/microphone

Part 3 Record accelerometer/microphone data via MATLAB

Part 4 Prepare a serial communication script

Part 5 Send the Microbot Teachmover a serial command

Part 6 Explore MATLAB’s Fuzzy Logic Toolbox

Part 7 Form anecdotal/heuristic control functions

Part 8 Code control functions using Fuzzy logic

Part 9 Combine sensor data + fuzzy functions/rules = completed fuzzy controller

55

The following subsections explore the audio setup, first controller and fuzzy controller

such that anyone “skilled in the art” can reproduce the results (United States Patent and

Trademark Office, 2005).

Audio: Setup and Acquisition

Figure 7-1 Representative audio hardware.

 A high level schematic of the audio capturing equipment is shown in Figure 7-1. The

schematic includes a wireless microphone transmitter (left), its receiver (center) and a Behringer

mixing box (right) for preprocessing/filtering. The mixer feeds directly into a computer sound

card. A microphone is used in lieu of accelerometers for though they both capture similar

vibration information the microphone is less expensive. Code written to invoke the microphone

is shown below.

%%%%% Create analog input object via a sound card and config
ai = analoginput('winsound');
addchannel(ai, 1);

Fs = 11025; % Sampling freq
ai.SampleRate = Fs; % Samplin freq again
ai.SamplesPerTrigger = Inf; % no recording limit
ai.TriggerType = 'Immediate'; % start on start(ia)
ai.TriggerRepeat = Inf; % no repeat limit

% Start analoginput obj w/ predefined properties
start(ai)
stop(ai) % when finished

% gather all available data
data = getdata(ai,ai.SamplesAvailable);

56

First Pass Controller
 Before building the fuzzy controller all proposed rules were tested using a simple bang-

bang controller. Bang-bang controllers have – at least – two distinct advantages: they are time-

optimal for a certain class of problems such as spacecraft-satellite attitude adjustment and have

simple designs (Nagi, Perumal, & Nagi, 2009). The code for this simple controller is shown

below.

if RMS > .007, serialsp = 239 else serialsp = 245, end;

A more graduated control law can be written that readily adjusts to microphone

amplitude levels. The single line conditional would read:

if audio_amplitude >= large, serialsp-- else serialsp++, end;

Fuzzy Controller
 The fuzzy controller is built using lessons learnt while working with the bang-bang

controller. This fuzzy controller is designed as a MISO system (multi-input single-output): audio

RMS and current serial speed are fed in and a new serial speed is spit out. To simplify

fuzzification only two membership curves are used for each input; it is important to properly

tune them. Tuned values can be seen in Figure 7-2 and Figure 7-3.

Figure 7-2 Audio, input variable, membership functions.

57

Figure 7-3 Serial speed, input variable, membership functions.

 Only two membership curves are used for the output variable NewSerialSpeed. Their

shapes can be seen in Figure 7-4.

Figure 7-4 NewSerialSpeed, output, membership functions.

58

To develop a good rule base recall the rules previously implemented in the bang-bang

controller. It had two simple rules: loud = slower; quiet = faster. These same two rules are used

in the fuzzy controller. A third “performance enhancing” rule – of less weight – is added to the

fuzzy controller to bias the speed upward without sacrificing stability. All rules are visible in

Figure 7-5.

Figure 7-5 Fuzzy Rule base. Note number three is weighted less (0.5).

Having only three rules accelerates inferencing and defuzzifying. Execution can also be

sped up by making the fuzzy system global, while by-passing all evalfis()argument checks.

Code for by-passing all evalfis()argument checks is shown below.

%% Sugeno Fuzzy Speed;

fluid = readfis('microctrl_s');

serialsp = ceil(evalfismex([RMS serialsp],fluid,101))

Once tuned, the fuzzy controller(s) performed well. The Sugeno Fuzzy Inference System

(FIS) produces a more graduated response surface than the Mamdani FIS. The Mambani surface

resembles a pure bang-bang controller. See Figure 7-6 and Figure 7-7.

59

Figure 7-6 A Mamdani controller produces a nearly binary response surface.

Figure 7-7 A Sugeno controller produces a partially graduated response surface.

60

The fuzzy controller runs well and yields predictable/steady behavior. One can see this

in Figure 7-8 where three consecutive runs from a demo run are aggregated for easy viewing.

Recall the goal is to use time histories of the audio signal to modify subsequent speed

commands. Table 7-1 shows the controller inputs and outputs numerically.

Figure 7-8 Consecutive Fuzzy runs oscillate about an RMS threshold.

Run RMS Resulting serial speed

Init – 239

1 0.0044 245

2 0.0078 240

3 0.0060 245

Table 7-1 Tabular form of RMS data found in Figure 7-8.

 The fuzzy controller performs more favorably than the graduated bang-bang controller

and the uncontrolled system. The graduated bang-bang controller, used here, has two

shortcomings: users must choose an initial speed and the controller migrates from this initial

value slowly. Therefore, an incorrect initial speed value will result in poor performance,

61

initially. However, the bang-bang controller does outperform the uncontrolled system. When

running without a controller users have two options: slow and stable or fast and unstable. There

is no scope for adjusting on the fly meaning either quality or time will be lost.

Chapter Summary

Teachmover by Microbot, is a cheap and mechanically robust teaching tool. It has held

up well over the years however its 1980’s era motion controller needs help because it goes

unstable at high speeds. This chapter showed how to solve the instability problem. It starts with

describing a way to increase observability, transitions to designing a fuzzy logic controller and

ultimately shows data from a demo run.

There are several places where this fuzzy work can be improved. Transforming

measured data into the frequency-domain and then characterizing the broader-band noise of

faster runs should be more robust since it is immune to audio amplitude. Figure 7-9 and Figure

7-10 show the frequency-domain contrast that gives this proposed method validity. Next, the

current fuzzy controller, with only two membership functions curves per input, is a crude

controller. More membership functions will widen the performance envelop. Finally, this work

should be compared to other control methods. In the next and final chapter, conclusions and

suggestions for future work will be discussed.

62

Figure 7-9 Typical FFT of a slow run.

Figure 7-10 Typical FFT of a fast run. Notice the broad-band noise and spike ±1200 Hz.

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3 Single-Sided Amplitude Spectrum of data(t)

Frequency (Hz)

|D
A

T
A

(f
)|

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3 Single-Sided Amplitude Spectrum of data(t)

Frequency (Hz)

|D
A

T
A

(f
)|

63

Chapter 8 Contributions and Recommendations

This chapter contains a summary of the contributions made in this thesis work and

includes recommendations for future work.

Contributions
Results of this thesis work include:

A. Building a combination ball point pen/touch sensor that is used as the drawing utensil.

The pen provides feedback necessary for rudementary compliance control.

B. Solving the equations of motion, including forward and inverse kinematics, needed to

control the robot arm’s position.

C. Programming software, and a GUI, that allows people to make the robot draw both

stored pictures and images created via user input. The software includes functions for

positioning with step counts, Cartesian positioning, grip width measuring and random

surface tracing.

D. Developing a fuzzy logic controller to improve the robot’s drawing ability. The fuzzy

controller uses a microphone for feedback and yields more rapid yet more stable

movements, when compared to a bang-bang or uncontrolled system.

These results are described in this document in the following way. In Chapter 1, the

focus is on understanding the “The Picasso Printer” approach and surveying different hardware

options. Chapter 2 presents an overview of humanoid robots, dating from the 15
th
 to the 21

st

Century. Construction methodologies and capabilities are compared. From this subset of robots

a platform is selected based on its merits and availability.

Chapter 3 contains a hardware description. The description highlights key areas of the

Microbot Teachmover design and all modifications necessary to ready it for drawing. Proper

maintenance is addressed as well.

In Chapter 4 equations necessary to effectively position the end effecter are derived. This

derivation is based in geometry and trigonometry. Starting from forward kinematics a

framework is established and used to solve the inverse kinematics. All conventions and

assumptions are laid out. Ultimately two tables contain the essential equations. They are

formatted such that they can be easily programmed.

64

Chapter 5 provides background into a Microbot Teachmover’s communication protocol

and factory software. Two communication protocols are introduced: teach control protocol and

serial protocol. The teach control protocol is included because it is the primary choice for most

users. The serial protocol approach is necessary to generate advance movements such as those

used when drawing pictures. Background into the factory software includes a table listing all

available software based commands. This chapter culminates with a short block stacking

program that touches on all the commands necessary to interface a basic drawing program.

Chapter 6 introduces the capabilities and improvements of a new User Interface (UI). A

demonstration shows how users interact with the UI from beginning to end. By presenting the

demo in this way, the chapter serves as a user manual. Each function, called by demo program,

is presented as well to show how user input is converted to output commands and ultimately, a

drawing.

In Chapter 7, a fuzzy logic controller is evaluated. The fuzzy controller is implemented

to ameliorate high speed instabilities. Instabilities are detected using newly installed sensors, the

data is processed in several ways and new speed commands are issued accordingly. Results and

data from test runs show the controller can effectively mitigate excessive vibration. The

controller therefore increases the mean time between failure and throughput.

In summary, this thesis shows how to produce a robust robot capable of drawing pictures,

that is easy to modify and can be used as a collegiate or K-12 teaching tool.

Recommendations
 Several recommendations for future work have been identified. Broadly speaking,

applications beyond those described here, applications that utilize the robot’s dexterity, should be

explored. As of this writing, a “Towers of Hanoi” program has been written based on the

functions described in Part C above. Other recommendations/suggestions/applications include:

• Having a multi-color pallet

• Making a more intuitive click-and-drag interface, as in (Fig, 2010)

• Adding provisions for 3D sculpting

• Fitting the robot onto a suck-puff system where it can be used for tasks like to elevator

button pushing

65

Next, are several specific technical recommendations needed to achieve the proposed future

work:

• Design and build a better end-effecter

• Add more sensors e.g a 6 DOF force-torque sensor

• Code a multi-input/multi-output Artificial Neural Network Fuzzy Inference solver

66

References

Adibhatla, G. (2007). Design and implementation of a compliance controller for the PA10-7CE

seven degree of freedom dexterous robot. (Masters of Aerospace Engineering and

Engineering Mechanics, University of Cincinnati).

Balestrino, A., De Maria, G., & Sciavicco, L. (1984). Robust control of robotic manipulators.

Proceedings of the 9th IFAC World Congress, 2435-2440.

Bos, H. D. (2010). Evolution of robotic hand. University of Twente.

Bottema, O., & Roth, B. (1979). Theoretical kinematics. New York; Amsterdam: North-Holland

Pub. Co.

Boyle, K. (2008a). Karakuri origins. Retrieved 8 April, 2010, from

http://www.karakuri.info/origins/index.html

Boyle, K. (2008b). Karakuri.info. Retrieved 8 April, 2010, from http://www.karakuri.info/

Boyle, K. (2008c). Zashiki karakuri. Retrieved 8 April, 2010, from

http://www.karakuri.info/zashiki/index.html

Breazeal, C. (2000). Sociable machines: Expressive social exchange between humans and

robots. (Sc. D, MIT).

Breazeal, C. (2004). Function meets style: Insights from emotion theory applied to HRI. IEEE

Transactions on Systems, Man and Cybernetics, Part C: Appications and Reviews, 34(2),

187-194.

67

Breazeal, C., & Scassellati, B. (2002). Robots that imitate humans. Trends in Cognative Science,

(6), 481-487.

Buss, S. (2004). Introduction to inverse kinematics with jacobian transpose, pseudoinverse and

damped lease squares methods University of California, San Diego:

Caplan, J. (2008, 10 Nov). The 50 best inventions of 2008. Time, 67

Clark, D., Collins, S., Ellis, A., & Watson, S. (2008). The invention of hugo cabret "the picasso

printer"

Craig, J. J. (1986). Introduction to robotics : Mechanics & control. Reading, MA: Addison-

Wesley Pub. Co.

Denavit, J., & Hartenberg, R. S. (1955). A kinematic notation for lower-pair mechanisms based

on matrices. Journal of Applied Mechanics, 22, 215-221.

Denavit-hartenberg parameters. (2009). Retrieved 11/24, 2009, from

http://en.wikipedia.org/wiki/Denavit-Hartenberg_Parameters

Deo, A. S., & Walker, I. D. (1993). Adaptive non-linear least squares for inverse kinematics.

Proceedings of the IEEE International Conference on Robotics and Automation, 186-193.

D'Souza, A., Vijayakumar, S., & Schaal, S. (2001). Learning inverse kinematics. Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and Systems, 298-303.

68

Eastern Cranial Affiliates LLC. (2009). Upper extremity prosthetic devices: Lower limb

prosthetics. Retrieved 10/10, 2010, from

http://www.infinitetech.org/prosthetics_upper_limb_extremity_prosthetic_devices.aspx

Fig, M. (2010). 41 complete GUI examples. Retrieved 9/8, 2010, from

http://www.mathworks.com/matlabcentral/fileexchange/24861-41-complete-gui-examples

Goertz, R. C., & Uecker, D. F. (1951). Electrical manipulator

Goldsmith, J., & Worsdall, M. (2010). Shadow robot company: The hand overview. Retrieved

10/10, 2010, from http://www.shadowrobot.com/hand/overview.shtml

Grzeszczuk, R., & Terzopoulos, D. (1995). Automated learning of muscle-actuated locomotion

through control abstraction. Proceedings of ACM SIGGRAPH'95, 63-70.

Grzeszczuk, R., Terzopoulos, D., & Hinton, G. (1998). NeuroAnimator: Fast neural network

emulation and control of physics-based models. Proceedings of ACM SIGGRAPH'98, New

York. 9-20.

Hogan, N. (1985a). Impedance control: An approach to manipulation: Part I - theory.

Transactions of the ASME Journal of Dynamic Systems, Measurement and Control, 107(1),

1-7.

Hogan, N. (1985b). Impedance control: An approach to manipulation: Part II - implementation.

Transactions of the ASME Journal of Dynamic Systems, Measurement and Control, 107(1),

8-16.

69

Hogan, N. (1985c). Impedance control: An approach to manipulation: Part III - aplications.

Transactions of the ASME Journal of Dynamic Systems, Measurement and Control, 107(1),

17-24.

Huston, R. L. (2001). In Liu C. Q. (Ed.), Formulas for dynamic analysis. New York: Marcel

Dekker.

Inverse kinematics. (2010). Retrieved 5/10, 2010, from

http://en.wikipedia.org/w/index.php?title=Inverse_kinematics&action=history

Jaeger, S. (2005). Visual journal - robot history. Retrieved 10/10, 2010, from

http://pages.cpsc.ucalgary.ca/~jaeger/visualMedia/robotHistory.html

Jordan, M. I., & Rumelhart, D. E. (1992). Forward models: Supervised learning with a distal

teacher. Cognitive Science, 16, 307-354.

Kaneko, K., Harada, K., Kanehiro, F., Miyamori, G., & Akachi, K. (2008). Humanoid robot

HRP-3. Nice, France. 2471-2478.

Kittel, N. (2008). Karakuri ningyo: Yesterday's robotics. Retrieved 8 April, 2010, from

http://www.abc.net.au/local/videos/2008/11/12/2417728.htm

Kusuda, Y. (2008). Toyota's violin-playing robot. Industrial Robot: An International Journal,

35(6), 504-506.

Law, J. M. (1997). In the shape of a person: The varieties of ritual uses of effigy in japan.

Princeton, NJ, USA: Princeton University Press.

70

Lendaris, G. G., Mathia, K., & Sacks, R. (1999). Linear hopfield networks and constrained

optimization. IEEE Transactions on Systems, Man, and Cybernetics - Part B Cybernetics,

29, 114-118.

Mansfeld, J. (1998). In Runia D. T., van Winden J. C. M. (Eds.), Chapter VI heron of

alexandria. Leiden, Netherlands: Brill.

Mason, M. T. (1981). Compliance and force control for computer controlled manipulators. IEEE

Transactions on Systems, Man and Cybernetics, SMC-11(6)

McCrate, M. (2009). Microbot teachmover - enhanced block stacking program. Retrieved 10/10,

2009, from http://www.youtube.com/watch?v=bnhDGNO71PQ

McCrate, M., & Boyle, K. (2010). Karakuri request

Microbot. (1984). Operation of the five-axis robot model TCM. Mountain View, CA, USA:

Microbot.

Mish, F. (Ed.). (1995). Merriam webster's collegiate dictionary (10th ed.). Springfield,

Massachusetts, USA: Merriam-Webster, Inc.

Nagi, F., Perumal, L., & Nagi, J. (2009). A new integrated fuzzy bang-bang relay control system.

Mechatronics, 19(5), 748-760.

Nakamura, Y., & Hanafusa, H. (1986). Inverse kinematics solutions with singularity robustness

for robot manipulator control. Transactions of the ASME Journal of Dynamic Systems,

Measurement and Control, 108(3), 163-171.

71

Oyama, E., Chong, N. Y., Agah, A., Maeda, T., & Tachi, S. (2001). Inverse kinematics learning

by modular architecture neural networks with performance prediction networks.

Proceedings of the IEEE International Conference on Robotics and Automation, 1006-

1012.

Page, E. (2007, 1/2007). Remote control: Mechatronic device extends author's reach over the

internet. Design Engineering, , 30.

Paul, R. P. (1981). Robot manipulators : Mathematics, programming, and control : The

computer control of robot manipulators. Cambridge, Mass: MIT Press.

Ramdane-Cherif, A., Daachi, B., Benallegue, A., & Levy, N. (2002). Kinematic inversion.

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,

1904-1909.

Reuleaux, F. (1876). Kinematics of Machinery(A. B. W. Kennedy Trans.). London, England:

Macmilan and Company, Ltd.

Robot. (2010). Retrieved 4/8, 2010, from http://en.wikipedia.org/wiki/Robot

Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., & Fijimura, K. (2002). The

intelligent ASIMO: System overview and integration. 2478-2483.

shinjiredfield. (2008). karakuri02pv7.jpg. Retrieved 13 April, 2010, from

http://nubikaraokeparty.files.wordpress.com/2008/06/karakuri02pv7.jpg

72

SHOBEI Tamaya IX. (2008). Yumihiki doji (archer doll). Retrieved 15 Apr, 2010, from

http://www.karakuri.info/zashiki/index.html

Spong, M. W. (2006). In Hutchinson S., Vidyasagar M. (Eds.), Robot modeling and control.

Hoboken, NJ: John Wiley & Sons.

Tevatia, G., & Schaal, S. (2000). Inverse kinematics for humanoid robots. Proceedings of the

IEEE International Conference on Robotics and Automation, 294-299.

The Mathworks. (1998). Help file on anfis. Natick, MA, USA:

The Mathworks. (2010). Anfis and the ANFIS editor GUI: Tutorial (fuzzy logic toolbox):

Constraints of anfis. Retrieved 1/15, 2010, from

http://www.mathworks.com/access/helpdesk/help/toolbox/fuzzy/fp715dup12.html

The MathWorks. (2010). Modeling inverse kinematics in a robotic arm demo. Retrieved 11/17,

2009, from

http://www.mathworks.com/products/fuzzylogic/demos.html?file=/products/demos/shippin

g/fuzzy/invkine_codepad.html

Toyota Motor Corporation. (2003). TOYOTA.CO.JP -toyota partner robot. Retrieved 10/24,

2010, from http://www.toyota.co.jp/en/special/robot/

United States Patent and Trademark Office. (2005). General information concerning patents.

Retrieved 7/17, 2009, from

http://www.uspto.gov/web/offices/pac/doc/general/index.html#functions

73

Wampler, C. W. (1986). Manipulator inverse kinematic solutions based on vector formations and

damped least squares method. IEEE Transactions on Systems, Man, and Cybernetics, 16,

93-101.

Wang, L. C. T., & Chen, C. C. (1991). A combined optimization method for solving the inverse

kinematics problem of mechanical manipulators. IEEE Transactions on Robotics and

Automation, 7, 489-499.

Wang, W., Loh, R. N. K., & Gu, E. Y. (1998). Passive compliance versus active compliance in

robot-based automated assembly systems. Industrial Robot: An International Journal,

25(1), 48-57.

Whitney, D. E. (1969). Resolved motion rate control of manipulators and human prosetheses.

IEEE Transactions on Man-Machine Systems, 10, 47-53.

Whitney, D. E. (1977). Force feedback control of manipulator fine motions. Transactions of the

ASME Journal of Dynamic Systems, Measurement and Control, 99(2), 91-97.

Wolovich, W. A., & Elliot, H. (1984). A computational technique for inverse kinematics. IEEE

Conference on Decision and Control, , 23 1359-1363.

Wood, G. (2002). Edison's eve. New York: Alfred A. Knopf.

Zhao, J., & Badler, N. I. (1994). Inverse kinematics positioning using nonlinear programming for

highly articulated figures. ACM Transactions on Graphics, 13, 313-336.

74

Appendix A Generalized Kinematics

“Formally, kinematics is that branch of mechanics that treats the phenomena of motion

without regard to the cause of the motion. In kinematics there is no reference to mass or force;

the concern is only with relative positions and their changes.” (Bottema & Roth, 1979) As

Microbot Teachmovers are light, slow moving robot with minimal payload capabilities, focusing

on kinematics makes sense. In Chapter 4 Special Kinematics, for Teachmovers, both forward

and inverse kinematics have been solved. Those equations are valid for all Teachmovers,

however the derivation methods lack generality and utilizes many simplifying assumptions and

constraints. Here, the forward and inverse kinematics are solved using generalized conventions

and modern methods; specifically, forward kinematics are formulated based on Denavit-

Hartenberg’s convention while an artificial neural-network fuzzy inference system (ANFIS) is

used for the inverse kinematic solution.

Forward Kinematics based on Denavit-Hartenberg Parameterization

Many conventions can be used to describe manipulator kinematics, there are Euler

Angles; roll, pitch and yaw angles; axis/angle representations to name but a few. One

convention/method, known at the Denavit-Hartenberg parameterization, stands above the rest as

being the most popular among robotists. Denavit and Hartenberg build on the work of Reuleaux

(Reuleaux, 1876). All these works utilize homogeneous transformations, which are referred to as

Special Euclidean Groups or dyadics in (Huston, 2001). Denavit and Hartenberg’s abstract

explains:

A symbolic notation devised by Reuleaux to describe mechanisms did not recognize the

necessary number of variables needed for complete description. A reconsideration of the

problem leads to a symbolic notation which permits the complete description of the

kinematic properties of all lower-pair mechanisms by means of equations. The symbolic

notation also yields a method for studying lower-pair mechanisms by means of matrix

algebra; two examples of application to space mechanisms are given. (Denavit &

Hartenberg, 1955)

75

It would seem that in a 6DOF world six parameters/coefficients “constitutes the

necessary and sufficient number” for a complete description of position and pose (Denavit &

Hartenberg, 1955). Using matrix notation, the special cases of pure translations or rotations can

be represented as follows (note: standard right-hand coordinate systems are used, n1 = x-axis, n2

= y-axis, n3 = z-axis, T ≡ translation, R ≡ rotation and finally the symbol inside the () represents

the angle or distance of action.

?@�A# � B1 0 0 A0 1 0 00 0 1 00 0 0 1C

?D�E# � B1 0 0 00 1 0 E0 0 1 00 0 0 1C

?F�G# � B1 0 0 00 1 0 00 0 1 G0 0 0 1C

H@�I# � B1 0 0 00 JKL�I# �MNO�I# 00 MNO�I# JKL�I# 00 0 0 1C

HD�P# � B JKL�P# 0 MNO�P# 00 1 0 0�MNO�P# 0 JKL�P# 00 0 0 1C

HF�Q# � BJKL�Q# �MNO�Q# 0 0MNO�Q# JKL�Q# 0 00 0 1 00 0 0 1C

However, by careful selection of coordinate frame assignments “four coefficients suffice”

(Denavit & Hartenberg, 1955). Spong has this to say regarding existence and uniqueness,

“Clearly it is not possible to represent any arbitrary homogeneous transformation using only four

parameters (Spong, 2006). Given two reference frames, 0 and 1, two conditions must be met:

(DH1) axis x1 is perpendicular to axis z0

(DH2) axis x1 intersects the z0

Historically, the matrix result, after packaging each of the four parameters into one

matrix, has been label “A.” A systematic method for building A matrices is given in (Paul,

1981). (Craig, 1986) expands upon the explanation and provides some useful examples. A

chapter in (Spong, 2006) quite literally contains a tutorial on assigning coordinate frames. Using

76

D-H parameters one can compactly represent transformations imparted by individual links, then

quickly do the matrix multiplication required to completely solve serial-link kinematics.

Each A matrix represents the transformation imparted by a link of an n-link manipulator

(special care is taken when assigning frame 0 and frame n or the first and last frames,

respectively). A matrices are the direct result of multiplying four 4x4 matrices where each 4x4

matrix represents the homogeneous transformation of one parameter. To clarify, assume the

desired operations are: Rz,θ Tz,d Tx,a Rx,α; where θi, di, ai and αi are unique for each link.

Multiplying in the given order yields Eqn 23. Post-multiplying operates on the subsequent

“current frames.”

 RS � RotF,TU . TransF,WU . Trans@,XU . Rot@,YU

� Bcos �ZS# �sin �ZS# 0 0sin �ZS# cos �ZS# 0 00 0 1 00 0 0 1C B
1 0 0 00 1 0 00 0 1 [S0 0 0 1 C B

1 0 0 AS0 1 0 00 0 1 00 0 0 1 C B
1 0 0 00 cos �IS# �sin �IS# 00 sin �IS# cos �IS# 00 0 0 1C

RS � Cos]ZS^ �Cos]IS^Sin]ZS^ Sin]IS^Sin]ZS^ Cos]ZS^ASSin]ZS^ Cos]IS^Cos]ZS^ �Cos]ZS^Sin]IS^ Sin]ZS^AS0 Sin]IS^ Cos]IS^ [S0 0 0 1

Eqn 23

 Generally, the symbols used in Eqn 23 are defined as follows: ai ≡ link length, αi ≡ link

twist, di ≡ link offset, θi ≡ joint angle. Craig (Craig, 1986) gives the definitions in an easy to read

bulleted list:

• ai = distance from Zi to Zi+1 measured along Xi

• αi = angle between Zi and Zi+1 measured about Xi

• di = distance from Xi-1 to Xi measured along Zi

• θi = angle between Xi-1 and Xi measured about Zi

Where three of the four parameters (a, α and either d or θ) are fixed for any given link (d

varies in a prismatic link and θ in a revolute link). Throughout the various literature parameter

definitions will vary depending on how frames have been attached to links. In the original paper,

77

symbols a, α, s and θ are used and most recently symbols r, α, d and θ are popular (Denavit-

hartenberg parameters.2009).

 Now that the basic math has been introduced, attention turns to assigning parameters to

the Teachmover. Frames are assigned according to Figure A-1; the global frame is fixed to the

floor; sequentially there are: Base (hidden), Shoulder, Elbow, Pitch, Roll and grip. Table A-1,

summarizes: a, α, d and θ parameters; they are similar to that of a PUMA 560. Links 1 → 5

correspond to Base, Shoulder, Elbow, Pitch and Roll in that order, which, for clarity, is the Teach

Control order. In Table A-1, all d(s) are fixed because all Teachmover joints are revolute.

Figure A-1 Link Coordinate Frames; all are right-hand; x = red, y = yellow & z = blue.

78

_ a` α` d` θ`Link 1�bALc# 0 d2 e Z�Link 2�MeKfg[ch# i 0 0 Z�Link 3�kgEKl# i 0 0 Z�Link 4�nNoGe# 0 d2 0 d2 ! Z""Link 5�HKgg# 0 0 LL Z

Table A-1 Summary of Microbot Teachmover D-H parameters.

 Placing each row of Table A-1 into an A matrix yields:

R� � BCos]Z�^ 0 Sin]Z�^ 0Sin]Z�^ 0 �Cos]Z�^ 00 1 0 e0 0 0 1C
R� � BCos]Z�^ �Sin]Z�^ 0 iCos]Z�^Sin]Z�^ Cos]Z�^ 0 iSin]Z�^0 0 1 00 0 0 1 C
R� � BCos]Z�^ �Sin]Z�^ 0 iCos]Z�^Sin]Z�^ Cos]Z�^ 0 iSin]Z�^0 0 1 00 0 0 1 C

R" � B�Sin]Z""^ 0 Cos]Z""^ 0Cos]Z""^ 0 Sin]Z""^ 00 1 0 00 0 0 1C
R � BCos]Z ^ �Sin]Z ^ 0 0Sin]Z ^ Cos]Z ^ 0 00 0 1 LL0 0 0 1 C

Eqn 24

Building T, where T ≡ transformation from base to point of interest (often considered end

effecter tip), simply involves matrix multiplication, see Eqn 25.

? � R�R�…Rq0� � h�,� h�,�h�,� h�,� h�,� h�,"h�,� h�,"h�,� h�,�h",� h",� h�,� h�,"h",� h","

Eqn 25

79

Where r#,# are given in Eqn 26.

 h�,� � Sin]Z�^Sin]Z ^ � Cos]Z�^Cos]Z ^Sin]Z� ! Z� ! Z""^ h�,� � Cos]Z ^Sin]Z�^ ! Cos]Z�^Sin]Z ^Sin]Z� ! Z� ! Z""^ h�,� � Cos]Z�^Cos]Z� ! Z� ! Z""^ h�," � Cos]Z�^�iCos]Z�^ ! iCos]Z� ! Z�^ ! LLCos]Z� ! Z� ! Z""^# h�,� � �Cos]Z�^Sin]Z ^ � Cos]Z ^Sin]Z�^Sin]Z� ! Z� ! Z""^ h�,� � �Cos]Z�^Cos]Z ^ ! Sin]Z�^Sin]Z ^Sin]Z� ! Z� ! Z""^ h�,� � Cos]Z� ! Z� ! Z""^Sin]Z�^ h�," � �iCos]Z�^ ! iCos]Z� ! Z�^ ! LLCos]Z� ! Z� ! Z""^#Sin]Z�^ h�,� � Cos]Z ^Cos]Z� ! Z� ! Z""^ h�,� � �Cos]Z� ! Z� ! Z""^Sin]Z ^ h�,� � Sin]Z� ! Z� ! Z""^ h�," � e ! iSin]Z�^ ! iSin]Z� ! Z�^ ! LLSin]Z� ! Z� ! Z""^ h",� � 0 h",� � 0 h",� � 0 h"," � 1

Eqn 26

The DH parameters above represent an idealized Teachmovers with independent joints.

Production Teachmovers are equipped with several coupled joints because it offers favorable

characteristics for Teach Control operation and because “Designing cabling to prevent [coupling]

from happening mechanically would have added undesirable complexity” (Microbot, 1984).

Coupling joints also graduates kinematic analysis beyond serially linked lower-pair mechanism

design to something resembling a parallel manipulator.

Mathematica is used for numeric and symbolic trigonometric simplification; code for this

part is greatly enhanced since interviewing Dr. Herbert Halpern. His suggestions include the

following commands:

80

in � rsA�, I�, [�, Z�t, sA�, I�, [�, Z�t, sA�, I�, [�, Z�t, sA", I", [", Z"t, sA , I , [, Z t, sAu, Iu, [u, Zutv tableMakerxx__z{ Module |saa, sst, aa � Dimensions]�^; ss
� Table]SequenceForm]Link, �^, s�, 1, First]aa^t^; TableFormx�, TableHeadings
� rss, sa`, α`, d`, θ`tvz�
tableMaker]in^ R]sa, α, d, θt^ { rsCos]Z^,�Sin]Z^ , Cos]I^, Sin]Z^ , Sin]I^, A , Cos]Z^t, sSin]Z^, Cos]Z^, Cos]I^,�Cos]Z^ , Sin]I^, A , Sin]Z^t, s0, Sin]I^, Cos]I^, [t, s0,0,0,1tv
? � Dot@@�R/@in# ? � Simplify]?, Trig � True^ mat]1^ � Array]Subscript]h, #1, #2^&, s4,4t^ List@@LogicalExpand]mat]1^(*template*) �� ?(*calculation*)^//?AEgc�Kh�
(*use//TableForm todisplayinMathematica, omitwhencopyingtoWord*)

To fully appreciate why D-H parameterization is valuable consider the following.

Whereas 6DOF can be described by four parameters this alone is not enough. A 6DOF

manipulator having all parameters populated by non-zero terms produces a very long total

transformation matrix T, T = A1A2...An-1. Mathematica produces a warning while trying to

compute the matrix multiplication:

Figure A-2 Mathematica supressing the output T for a fully populated 6DOF manipultor.

T’s first term is shown next; the whole 4x4 matrix requires ~70 pages to display in

textual form!

A very large output was generated. Here is a sample of it:

8�1�<

Show Less Show More Show Full Output Set Size Limit...

81

T�1,1# � cos �Z #�cos �Z"#�cos �Z�#�cos �Z�#cos �Z�# � cos �I�#sin �Z�#sin �Z�##! ��cos �I�#cos �I�#cos �Z�#sin �Z�# ! sin �I�#sin �I�#sin �Z�#� cos �I�#cos �Z�#sin �Z�##sin �Z�##! �cos �I�#cos �Z�#��cos �I�#cos �I�#cos �Z�#sin �Z�#! sin �I�#sin �I�#sin �Z�# � cos �I�#cos �Z�#sin �Z�##! sin �I�#�cos �I�#sin �I�#sin �Z�# ! cos �I�#cos �Z�#sin �I�#sin �Z�#! cos �Z�#sin �I�#sin �Z�## � cos �I�#�cos �Z�#cos �Z�#� cos �I�#sin �Z�#sin �Z�##sin �Z�##sin �Z"##! �cos �I"#cos �Z"#�cos �I�#cos �Z�#��cos �I�#cos �I�#cos �Z�#sin �Z�#! sin �I�#sin �I�#sin �Z�# � cos �I�#cos �Z�#sin �Z�##! sin �I�#�cos �I�#sin �I�#sin �Z�# ! cos �I�#cos �Z�#sin �I�#sin �Z�#! cos �Z�#sin �I�#sin �Z�## � cos �I�#�cos �Z�#cos �Z�#� cos �I�#sin �Z�#sin �Z�##sin �Z�##! sin �I"#��cos �Z�#sin �I�#��cos �I�#cos �I�#cos �Z�#sin �Z�#! sin �I�#sin �I�#sin �Z�# � cos �I�#cos �Z�#sin �Z�##! cos �I�#�cos �I�#sin �I�#sin �Z�# ! cos �I�#cos �Z�#sin �I�#sin �Z�#! cos �Z�#sin �I�#sin �Z�## ! sin �I�#�cos �Z�#cos �Z�#� cos �I�#sin �Z�#sin �Z�##sin �Z�## � cos �I"#�cos �Z�#�cos �Z�#cos �Z�#� cos �I�#sin �Z�#sin �Z�## ! ��cos �I�#cos �I�#cos �Z�#sin �Z�#! sin �I�#sin �I�#sin �Z�#� cos �I�#cos �Z�#sin �Z�##sin �Z�##sin �Z"##sin �Z #

Trying to simplify T yields another error:

Simplify::time: Time spent on a transformation exceeded 300 seconds, and the transformation

was aborted. Increasing the value of TimeConstraint option may improve the result of

simplification. >>

Figure A-3 Mathematica warning produced while trying to simplilfy a “full T.”

It is rather ingenious that attaching frames to links following DH1 and DH2 listed above

often results in one or more parameter(s) equating to zero, which greatly simplifies the math.

82

Inverse Kinematics derived using Artificial Neural Network Fuzzy Inference

In the previous section, forward kinematics are derived using a standard convention

known as Denavit-Hartenberg parameterization. Solving inverse kinematics of very large

systems can be intractable. Using a more modern method that discovers kinematic relations in

lieu of geometry and trigonometry is useful and is the topic of this section.

While it is possible to solve Eqn 26 iteratively, those 16 equations are nonlinear and

almost one-way; that is, it is infinitely easier to check a candidate solution for satisfiability than

to produce a satisfying solution. For simple systems, traditional closed formed solutions can be

found geometrically that are solvable in a few clock cycles on any mediocre computer.

Upgrading to a modest computer opens the door to computationally discovering inverse

kinematics.

“There are several methods for solving [inverse kinematics] [computationally], coming

originally from robotic applications” writes Samual Buss in his survey (Buss, 2004). “These

include cyclic coordinate descent methods (L. C. T. Wang & Chen, 1991), pseudoinverse

methods (Whitney, 1969), Jacobian transpose methods [(Balestrino, De Maria, & Sciavicco,

1984),(Wolovich & Elliot, 1984)], the Levenberg Marquardt damped least squares methods

[(Wampler, 1986), (Nakamura & Hanafusa, 1986)], quasi-Newton and conjugate gradient

methods [(L. C. T. Wang & Chen, 1991),(Zhao & Badler, 1994),(Deo & Walker, 1993)], and

neural net and artificial intelligence methods [(Grzeszczuk & Terzopoulos, 1995),(Lendaris,

Mathia, & Sacks, 1999), (Oyama, Chong, Agah, Maeda, & Tachi, 2001), (Ramdane-Cherif,

Daachi, Benallegue, & Levy, 2002), (Grzeszczuk, Terzopoulos, & Hinton, 1998), (Jordan &

Rumelhart, 1992), (Tevatia & Schaal, 2000), (D'Souza, Vijayakumar, & Schaal, 2001)].” An

artificial neural network fuzzy inference system is used here.

Neural Networks are: a computer architecture in which a number of processors are

interconnected in a manner suggestive of the connections between neurons in a human brain and

which is able to learn by a process of trial and error (Mish, 1995). In this thesis, a neural net is

treated as a black box.

The procedure to use the Neural Network black box is as follows: start with feeding in

reference/training data; let the box train itself; then query. Ideally interpolated responses will

accurately represent the training data. The concentration of this section will be on generating

training data, training/testing of artificial neural net parameters and optimizing.

83

Teachmover arms have 5DOF, plus a gripper, so they can draw on many arbitrary

surfaces. Since it is easier to draw on planes and it costs nothing to markup recycled paper, the

canvas will be always be recycled paper taped to a table. This table will be the XY plane.

The 1
st
 step in using a neural net is to acquire/generate reference/training data. Here the

domain is limited to a rectangle. Limiting the scope to a 2D rectangle is a necessary condition

because MATLAB’s anfis function is zero or first order only (The Mathworks, 2010).

Training data is generated using a function written for this thesis named cart_cmd, which

outputs motor encoder values given a desired position. cart_cmd is called many times, with

different parameters, and each input/output combination is saved in a training matrix. The

philosophy is: forward kinematics are much easier to solve than inverse kinematics, so generate a

mesh of training points using forward kinematics, and use the artificial neural network fuzzy

inference system to solve the inverse kinematics. The syntax of cart_cmd is shown next.

% Command needed to go from home to pos

% [J1,J2,J3,J4,J5,J6] = cart_cmd([pos]);

% pos = [x,y,z,p,r,g];

% J = [base,shoulder,elbow,R wrist, L wrist,grip]

 A sample of the training matrix is shown in Table A-2. It is a mesh of points on the XY-

plane inside a 2”x2” rectangle centered about point (0,7) on the calibration sheet. On the left is

the commanded position and pose and to the right are the motor encoder values. All together the

training matrix is 81x12.

x (inch) y (inch) z (inch) pitch (deg) roll (deg) grip base shoulder elbow R wrist L wrist grip

5 1.5 0 -90 0 0 327 -477 1149 455 312 1149

5 2 0 -90 0 0 428 -482 1132 477 291 1132

5.5 -2 0 -90 0 0 -393 -491 1086 298 469 1086

Table A-2 A sample of the training matrix.

The 2
nd

 step, to train the artificial neural network fuzzy inference system, requires only

one MATLAB command, anfis. Given as:

84

[fis,error,stepsize,chkFis,chkErr] = ...

anfis(trnData,numMFs,trnOpt,dispOpt,chkData,optMethod)

The command has many options. Here: fis, error plus trnData, numMFs, trnOpt

and dispOpt are used for training the picture drawing robot. Each of the options is well

documented in the help index. Syntax for one call, using this truncated set of options, is:

[anfisC,error(:,mf,C)] = anfis([cmd(:,1) cmd(:,2) data(:,C)], mf, epochmax);

Where, according to the help index (The Mathworks, 1998):

• anfisC is the FIS structure whose parameters are set according to a minimum training

error criterion.

• error(:,mf,C) is an array of root mean squared errors representing the training data

error signal and the checking data error signal, respectively. The function only returns

chkErr when you supply chkData as an input argument.

• ([cmd(:,1) cmd(:,2) data(:,C)] is the training data set. This matrix contains data input in

all but the last column. The last column contains a single vector of output data.

• mf is the number of membership functions. Use numMFs, an integer scalar value, as the

second argument to anfis when you do not already have a FIS to train, and you want anfis

to build a default initial FIS using your data. Each input and output to this FIS is

characterized by one or more membership functions. Specify the number of membership

functions in numMFs.

• epochmax is trnOpt(1) training epoch number

• dispOpt(1:4) are all true.

The number of membership functions (MFs) and training epoch number are analogous to the

number of people tasked with a mission and the amount of time they have to complete it,

respectively. A big team and more time are helpful however these two parameters compete for

computational resources. Another concern is how to test when MF have saturated their learning

potential. Plots demonstrating these ideas are presented in the next few pages.

85

 Training the base motor exemplifies the typical four step procedure. Step 1, run anfis.

Running anfis and looking at anfisBASE reported error, Figure A-4, there is no apparent end to

its “goodness,” more members and time appear to decrease error indefinitely. While this may be

true, the intention is to decrease encoder count and therefore positional error.

In step 2, a new test compares anfis to the analytic solution. anfisBASE is queried to

predict points that interpolate the training data, the interpolated data set differs from the training

data in that it is three times denser. The test is repeated several times, each time the number of

membership functions is increased by one, while the number of epochs is kept constantly high.

Test results are giving graphically in Figure A-5 to Figure A-10.

Figure A-4 anfisBASE error as reported by anfis.

2

3

4

5

6

7

0

50

100

150

0

0.5

1

1.5

2

mf

error

epochs

86

Figure A-5 (above) Motor step error at membership funcs = 2 and epochs = 150.

Figure A-6 (above) Motor step error at membership funcs = 3 and epochs = 150.

0 50 100 150 200 250 300
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Deduced - Predicted

2

m
o
to

r
s
te

p
s

0 50 100 150 200 250 300
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Deduced - Predicted

3

m
o
to

r
s
te

p
s

87

Figure A-7 (above) Motor step error at membership funcs = 4 and epochs = 150.

Figure A-8 (above) Motor step error at membership funcs = 5 and epochs = 150.

0 50 100 150 200 250 300
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Deduced - Predicted

4

m
o
to

r
s
te

p
s

0 50 100 150 200 250 300
-50

-40

-30

-20

-10

0

10

20

30

40

50
Deduced - Predicted

5

m
o
to

r
s
te

p
s

88

Figure A-9 (above) Motor step error at membership funcs = 6 and epochs = 150.

Figure A-10 (above) Motor step error at membership funcs = 7 and epochs = 150.

0 50 100 150 200 250 300
-50

-40

-30

-20

-10

0

10

20

30

40

50
Deduced - Predicted

6

m
o
to

r
s
te

p
s

0 50 100 150 200 250 300
-50

-40

-30

-20

-10

0

10

20

30

40

50
Deduced - Predicted

7

m
o
to

r
s
te

p
s

89

 Scale alone demonstrates two or three membership functions are best. Comparing

standard deviation proves two membership functions is best for the plotted/observed graphs.

In step 3, computation time also demonstrates training two membership functions is

faster than training three. Each new member appears to increase training time exponentially,

Figure A-11.

Figure A-11 Time vs # of membership functions.

Optimizing is the 4
th

 and final step. Thus far an arbitrarily large number of epochs have

been used for training. Previously, this was set to 150 epochs. More detailed inspection of

Figure A-4 is required to determine exactly where the knee is and saturation occurs. In Figure

A-12 it is clear knee is at 68 and error turns into a flat line around 100 epochs.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

1

2

3

4

5

6

7

8

time

of Membership Funcs

T
im

e
 (

s
)

90

Figure A-12 Error vs # of epochs given 2 membership functions.

 Most anfis ‘reported error’ surface plots monotonically decrease as membership

function and epochs increase as shown in Figure A-4. Exceptions to this ‘rule’ occur twice.

Both elbow and wrist plots contain a local maximum whereas none should occur, Figure A-13

and Figure A-14. A possible explanation for this behavior could be the fact that Teachmovers

are 5DOF systems and anfis cannot handle such a highly non-linear systems.

0 50 100 150
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

epochs

e
rr

o
r

91

Figure A-13 anfisELBOW error reported by anfis. Notice the bump.

Figure A-14 anfisWRIST error reported by anfis. Notice the bump.

2

3

4

5

6

7

0

50

100

150

0

0.5

1

1.5

mf

error

epochs

2

3

4

5

6

7

0

50

100

150

0

0.5

1

1.5

mf

error

epochs

92

 Steps one through four are repeated for each joint motor. The optimal number of

membership functions and epochs for each joint motor are tabulated in Table A-3.

Motor Membership function count Epochs

base 2 100

shoulder 2 100

elbow 2 125

pitch 2 100

roll 3 150

grip 2 250

Table A-3 Optimal ANFIS parameters.

Summary
This concludes Appendix A on Generalized Kinematics. The math covered in this

section is important for several reasons. First, it frames the kinematics and inverse kinematics

within a standardized notation. Taking the equations derived in Chapter 4 and reformulating

them in this way enables the work to be quickly compared and implemented. Second, using the

compact Denavit-Hartenberg parameterization technique reduces the computation time by using

matrix operations. Third, the ANFIS method shown here can be used to solve other, larger

systems where analytic solutions are intractable. Some code for this modern ANFIS approach to

kinematics can be found at (The MathWorks, 2010).

	McCrate THESIS Approval.pdf
	Thesis.pdf

