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Abstract 

Robots are becoming evermore ubiquitous.  Their design requires combining many 

engineering specializations.  Initially, robots were tele-operated arms.  Then they advanced into 

automated assembly and material handing machines.  However, more recent efforts are focused 

on making companion robots that look and act like humans.  This thesis presents an effort to 

make a Modern Mechanical Automaton capable of drawing pictures that can be used to teach 

kinematics and dynamics and also for K-12 outreach.  These functions are accomplished by 

adding a touch sensor and microphone to an existing five degree of freedom robot, then writing a 

fuzzy logic controller to direct movements based on Graphical User Interface input.  This work 

has been demonstrated in many trials.  Experience from these trials suggests people of all ages 

find the user interface easy to understand.  Beyond the engineering accomplishments of solving 

equations, building a fuzzy controller and having a physically realized system, the broader 

impacts are creating an easily expandable system and successful outreach to bolster the National 

Science Foundation’s Science, Technology, Engineering and Mathematics initiatives. 
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Chapter 1 Introduction 

Motivation: 

Robots are becoming evermore ubiquitous.  Initially, robots were tele-operated arms.  

Then designs advanced into automated assembly and material handling machines.  However, 

more recent efforts are focused on making companion robots that look and act like humans. 

Many humanoid type devices have been developed.  The earliest were cloth and bone, 

were powered by wooden gear trains and served tea, mimed archers or performed other 

functions.  Automata of the late 19
th

 and early 20
th

 centuries were mostly metal, were driven by 

springs, cams and followers and could pen a few lines of prose or draw a few pictures, at most.  

Modern humanoid robots are all computer controlled and powered by hydraulic, pneumatic or 

most often electric elements; elements are sometimes combined in the effort to make machines 

that look, act and “think” like humans. 

MIT is making robots that think like humans (C. Breazeal, 2000; C. Breazeal & 

Scassellati, 2002; C. Breazeal, 2004).  Nexi is one of their newest robot designs.  It can read 

people’s expressions and respond appropriately (Caplan, 2008).  Toyota’s human-like Partner 

robots can perform acts requiring high levels of coordination such as playing instruments.  They 

have publicly demonstrated trumpeting and playing all four strings of a violin (Kaneko, Harada, 

Kanehiro, Miyamori, & Akachi, 2008; Kusuda, 2008).  Honda produces one of the most 

advanced humanoid bipeds.  ASIMO can walk, run, climb up/down stairs and simultaneously 

balance a tray of coffee or tea (Sakagami et al., 2002).  Creating machines that are gauged on 

their humanness, are able to compliment our motor skills and are accepted in places beyond the 

factory floor is quite a mission for any engineer, scientist or psychologist. 

Another mission for robot enthusiasts is to create a machine with artistic ability.  Artistic 

ability here refers to the ability to reproduce a work of art – from something as simple as a 

geometric shape to something as intricate as a famous Henri Matisse or Picasso.  During the 

2007-08 academic year David Clark, Stephen Collins, Austin Ellis and Scot Watson, all from the 

former Electrical and Computer Engineering and Computer Science department at the University 

of Cincinnati, worked to build “The Picasso Printer,” a humanoid drawing robot, to fulfill their 

senior design requirements; this thesis represents a continuation of and a divergence from their 
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work.  Both projects share a common goal, “To make a digital machine that draws pictures, 

much like the one described in the book The Invention of Hugo Cabret by Brian Selznick” 

(Clark, Collins, Ellis, & Watson, 2008).  The Picasso team also outlined several sub goals, see 

Table 1-1.  Much of their effort was spent building hardware from scratch.  They generated 

wonderful system design diagrams, technology specifications/standards, interface specifications 

and test plans however before they could realize the goal time expired. 

 

1. Design a control system that uses a microprocessor to control motors that move the arm 

across the page and lift the pen to draw the picture. 

2. Build the machine (control system and physical device) during the Spring Quarter in 

order to implement and test our design.  

3. Test and produce a final working art machine for use as a fundraiser. 

Table 1-1  2007-08 Senior Design Subgoals (Clark et al., 2008). 

This thesis serves to document a new approach to the Hugo/Picasso robot.  Work begins 

after identifying a robot that meets most of the physical requirements of a drawing robot.  

Construction and programming details are provided.  Results, in the form of equations, pictures 

and demo data are given as well. 

General objective: 

Produce a robust robot capable of drawing pictures, that is easy to modify and can be 

used as a collegiate or K-12 teaching tool. 

Specific objectives: 

A. Design hardware and an end effecter with the dexterity needed to draw pictures or 

write.   

B. Solve the equations of motion necessary to command end effecter positioning and 

generalize them based on widely used industrial and academic standards. 

C. Write software to make a robot draw both stored pictures and images created via user 

input. 

D. Stabilize all operations by building a flexible fuzzy controller to augment the stepper 

motor technology. 
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E. Work with art students to make a costume or other covering to personify the robot 

thereby making it look more like Hugo Cabret’s mechanical man. 

Research Methodology: 

All specific objectives require completing the set of tasks listed below: 

A. Design an end effecter capable of providing feedback while grasping a drawing 

utensil that is compatible with a Microbot Teachmover, the chosen robot base 

platform. 

B. Using trigonometry, geometry and kinematic decoupling to solve forward and inverse 

kinematics analytically.  Generalize these equations using matrices, Denavit-

Hartenberg parameterization and a fuzzy inference system.  

C. Write functions to test communication, motion and feedback.  Write software that 

utilizes the analytic equations.  Build a simple to understand GUI to benefit/aid user 

experience/interaction.   

D. Tune membership functions and define a rule base for a fuzzy controller.  

E. Teach Jennifer Baldwin’s art students how to program Microbot Teachmover arms; 

then, work with them to design a humanoid figure and costume to cover the arm. 

Contributions: 

Upon successfully completing the tasks listed these contributions are expected: 

A. Having robust hardware with enough dexterity to draw.  This should open the door to 

many applications beyond the picture drawing detailed herein. 

B. Closed form analytic solutions for the forward and inverse kinematics. These are 

transformed into standardized matrix notation to provide a good base for future work.   

C. A natural user interface providing an experience similar to connect-the-dots.   

D. A new control method for Microbot Teachmovers. 

E. Successful outreach, especially toward K-12 students, in order to bolster the National 

Science Foundation’s Science, Technology, Engineering and Mathematics (STEM) 

initiatives. 
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Overview 

 Chapter 2 provides an overview of some entertainment robots both from antiquity and 

modern times.  Chapter 3 introduces the hardware structure that will be utilized.  In Chapter 4 

equations necessary to command a Teachmover are solved.  Chapter 5 presents a brief overview 

of factory Microbot Teachmover capabilities and user interfaces.  Chapter 6 introduces the new 

user interface for picture generation.  Chapter 7 gives details of a fuzzy logic controller designed 

to stabilize the robot’s speed.  Chapter 8 is a summary of the contributions and some 

recommended future work. 
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Chapter 2 Literature Review 

 

Automata are defined as mechanisms that are relatively self-operating (Mish, 1995).  In 

this chapter, several previous generations of humanoid automata are examined.  Focus will be on 

current field robots, their end effectors, feedback/control systems and the task of translating an 

image acquired through a GUI into a penned image.  These topics capture the challenges 

associated with building a drawing/writing robot. 

Early Robots 
Shannon Jaeger compiled a timeline listing significant robots (Jaeger, 2005) and 

(Robot.2010) contains a slightly different timeline.  They both trace the origin of robotic 

movement back to the first centuries BC and AD as detailed in (Mansfeld, 1998).  Over a 

millennia later, Japanese Karakuri masters began crafting Karakuri Ninjyo – or person shaped 

mechanism meant to trick or surprise – from cloth, bone and wood (Boyle, 2008a) (Boyle, 

2008c) (Boyle, 2008b) (Law, 1997).  These “robots” served tea, Figure 2-1, mimed archers, 

Figure 2-2, or performed other functions (Kittel, 2008) (shinjiredfield, 2008). 

 

Figure 2-1 Chahakobi Ningyo (Tea 
Serving Doll) (Boyle, 2008c) used with 

permission (McCrate & Boyle, 2010) 

 

Figure 2-2  Yumihiki Doji' (archer doll).  
(SHOBEI Tamaya IX, 2008) used with 

permission (McCrate & Boyle, 2010). 
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Starting in the late 19
th
 and early 20

th
 centuries, automata were made from metal, were 

driven by springs, cams and followers and could pen a few lines of prose or course line art, 

Figure 2-3.  Gaby Wood has written extensively on these century-old “robots” (Wood, 2002). 

 

 

Figure 2-3  Automaton in The Invention of Hugo Cabret. 

 

Current Challenges 
Humanoid robot research is branching into emotional, voice and facial detection, 

recognition and response as well as natural locomotion (C. Breazeal, 2000).  Simultaneously, 

robot researchers are trying to conquer the challenges related to locomotion, drawing, writing 

and signature replication. 

 In order to replicate signatures robots need dexterous end effectors.  End effectors and 

other grippers are tools attempting to replicate the dexterity of a human hand.  The 

aforementioned Karakuri tea serving dolls only had a single degree of freedom “platform” end 

effecter.  These days, many end effecter designs are available.  Bos catalogs recent efforts in 

robotic hand design (Bos, 2010).  The report shows only four documented cases of grippers 

exceeding 20DOF.  However, a human hand has 25DOF and also provides valuable sensory 

feedback. 
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 Feedback is the transmission of evaluative or corrective information about an action, 

event or process to the original controlling source (Mish, 1995).  The reaction force in all simple 

machines is similar to feedback and every electronic sensor can be used for feedback as well.  

Raymond Goertz patented the first electrical force feedback system (Goertz & Uecker, 1951).  

Today, end effectors are equipped with force/torque, tactical, proximity and/or many other 

sensors with resolutions approaching that of a human hand.  The best writing and drawing robots 

utilize force feedback in combination with advanced controllers. 

 Controllers are built to change the behavior of a physical system while maintaining 

stability.  There are many controller types ranging from error reducing Proportional- Integral-

Derivative to advanced neuro-fuzzy logic controllers.  A particular family of controllers, known 

as “compliance” or “accommodation” controllers, is specifically designed for applications where 

an end effecter must physically contact the environment (Mason, 1981), (Whitney, 1977).  

Adibhatla explains compliance controller applications span from on-orbit rendezvous to 

automobile body welding (Adibhatla, 2007).  Wang et al. distinguishes between active and 

passive compliance (W. Wang, Loh, & Gu, 1998).  The demarcation they propose is: 

Active compliance is controlling individual joint-servo stiffness by directly controlling 

joint torque. 

Passive compliance is the intrinsic mechanical structural compliance due to the finite 

stiffness of the robot base, links, joint drive mechanism, grippers as well as the assembled 

parts. 

In this work, a spring-loaded “touch sensor” pen and approach function together form a passively 

compliant system. 

 Hogan introduces impedance control by further refining accommodation control.  

Impedance control and techniques for control of manipulator behavior result in a unified 

approach to kinematically constrained motion, dynamic interaction, target acquisition and 

obstacle avoidance (Hogan, 1985a; Hogan, 1985b; Hogan, 1985c).  Adibhatla neatly summarizes 

Hogan’s three-part paper on the control of dynamic interaction between a manipulator and its 

environment by writing: In part I, [Hogan] presents the theory of the mechanics of interaction.  

In part II, he describes impedance techniques for computing the relationship between external 

forces and displacements or velocities of a tool tip.  In part III, Hogan presents an example to 

illustrate the usefulness of impedance control.  Spong et al. covers compliance, impedance and 
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other techniques for controlling joints individually in Robot Modeling and Control (Spong, 

2006). 

 When a sophisticated end effecter is instrumented with feedback sensors attached to a 

properly tuned controller, the results can appear very life-like (Goldsmith & Worsdall, 2010) 

(Eastern Cranial Affiliates LLC, 2009) even when operated remotely (Page, 2007).  When the 

goal is to copy an image or signature, the forward and inverse kinematics must also be solved.  

Chapter 4 covers the derivation of inverse kinematics for the Microbot Teachmover and 

Appendix A covers solving inverse kinematics in general.  The next chapter starts to describe a 

new attempt at a drawing/writing robot. 
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Chapter 3 Hardware Description 

  

While many robot simulation environments exist, this work involves hardware because 

the objective is to actually draw a physical picture.  The first group at the University of 

Cincinnati to attempt this project assumed commercial hardware did not exist that could meet the 

required demands.  Therefore, a major part of their effort was to design/build/test a custom robot.  

Since that time a commercial option has been found.  The present work utilizes Microbot 

Teachmovers as the foundation on which locomotion and picture drawing is based. 

This chapter will focus entirely on hardware.  A very detailed hardware description exists 

in the form of a user manual so this chapter will highlight key areas of the design and all 

modifications necessary to ready the Microbot for drawing.  After reading this chapter, 

experimentalists should feel comfortable enough to modify and/or repair the hardware. 

 Teachmovers are cleverly constructed.  Mechanically they are just a few pulleys and 

some aircraft cable; electrically, stepper motors spin pulleys once commanded by a Motorola 

6502 microprocessor.  Out of the box, Teachmovers, Figure 3-1, – or they will sometimes be 

referred to as, robots, arms, Microbots or occasionally Auto – look like small Unimation PUMA 

560s.  In fact both 560s and Teachmovers are 5DOF arms and both use two fingers as the end 

effecter.  On Teachmovers a four-bar mechanism ensures the fingers remain parallel upon 

approach in order to maximize gripping area.  Small rubber pads glued to the fingers also 

improve gripping ability.  Above the gripper is a differential wrist joint.  Using this gearing 

scheme for the wrist makes pitching and rolling the fingers very easy though it requires 

coordinating the L and R wrist gears.  Between the wrist and elbow joint several sets of thin 

aircraft cables are encased inside the sheet metal body.  Constructing the body out of sheet metal 

saves on cost and weight.  Between the elbow and shoulder joint there is more cabling and the 

only feedback sensor.  The sensor is just a microswitch that acts as a tension indicator.  Another 

clever and interesting trait is that all motors and gear trains are mounted within the body.  By 

moving all motors into the body individual link load is lessened and lighter construction is 

possible; also, balancing is easier and the moment of inertia is lessened since the second term of 

the parallel axis theorem, I = Icm + mr
2
, is reduced as r is reduced.  A modern example of a “wire-

operated system” with internally mounted actuators is demonstrated by the fourth Toyota Partner 
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Robot (Toyota Motor Corporation, 2003).  One disadvantage of cable driven systems is they 

typically have a limited payload capacity. 

Since all the arm’s joints are revolute it is very important to keep cables properly 

tensioned.  Loss of proper adjustment is most commonly caused by one of two events: when a 

user crashes the arm into a stationary object or by the cables tending to lengthen over time.  

Fortunately, the engineers were perspicacious and built in user accessible tuning knobs. 

 

Figure 3-1  Robot arm. 

 The black rectangular box underneath the body is the Teachmover’s base, where the 

power and Teach Control cables are located.  Two DB-25 serial interface connectors provide a 

means of communicating via a computer.  Having two connectors gives users the ability to daisy 

chain Microbots.  Inside the base is where the motherboard is located, Figure 3-2. 
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Figure 3-2  Motherboard, where points of interest are highlighted. 

A B 

C 

D 

D 

E 
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The biggest chip, on the motherboard, Figure 3-2, is the micro controller (A): an 8-bit 

Motorola 6502 common in such devices as the original Nintendo NES, Commodore 64, several 

Atari models and all Apple ][ computers.  Aiding processing is external RAM (B).  The manual 

describes an adventurous memory hack that can double system memory if needed (C shows 

memory mod addresser pin).  Teachmovers are serial communication ready.  Two chips enable 

this RS-232 serial communication (D).  Enhancing the platform even more is a set of built-in I/O 

pins (E).  Using these I/O pins, users can connect up to seven additional sensors and output up to 

five bits of information.  Here green and white wires connect to the “touch sensor.”  The touch 

sensor is a specially built spring-loaded pen, Figure 3-3, which runs simultaneously with the 

approach function that is described in Chapter 6. 

This succinct chapter introduces readers to the hardware platform.  The information 

herein provides enough detail that someone should be able to care for the hardware.  Using this 

chapter as a starting point one can modify Teachmovers and greatly increase functionality 

beyond that which is described within these pages.  In the next chapter, equations necessary to 

effectively position the end effecter are derived and formatted such that they can be easily 

programmed. 
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Figure 3-3  Pen with embedded touch sensor/limit switch. 
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Chapter 4 Special Kinematics 

 

Understanding kinematics is a necessary condition for commanding a robot in an 

intelligent and useful way.  Kinematics is formally defined in Appendix A on Generalized 

Kinematics.  In the context of robotics, forward kinematics is defined as a process to determine 

where in space a robot’s end effecter is given the robot configuration.  Inverse kinematics can 

then be defined as deriving the robot configuration based on where, in space, the end effecter is. 

In this chapter, forward and inverse kinematics for the Microbot Teachmover Arm are 

derived.  Symbols used to describe joints, links and angles are based on those found in original 

Microbot Teachmover manual. 

In addition to notation, defining a coordinate system is necessary.  Many coordinate 

systems exist, the most common coordinate systems include: Cartesian, polar, cylindrical and 

spherical.  In this derivation two coordinate systems are used:  Joint Coordinates and Cartesian.  

Joint Coordinates are simply joint angles and include base, shoulder, elbow, pitch and roll.  The 

gripper is controlled by a motor but is not a positional DOF.  Cartesian Coordinates are defined 

by Microbot’s Initialization and Calibration Grid, Figure 4-1 and include X, Y, Z, Pitch (P) and 

Roll (R).  Using Figure 4-1, the direction for Z is defined by the right-hand rule.  All of the arm’s 

joints are revolute, therefore it is known as an articulated, revolute, elbow or anthropomorphic 

manipulator (Spong, 2006). 
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Figure 4-1  Initialization and Calibration Grid from Microbot. 

The relationship between different parts of the arm must be specified.  In the following 

explanation all specific information, concerning how each joint is articulated, how the joint 

angles are measured and the distances between joints, comes directly from the manual. 

The Greek letter theta, θ, is used to indicate joint angles.  All θs, measured in degrees, 

radians or revolutions, are proportional to motor steps, J, as shown in Table 4-1 (motor steps are 

sent via computer commands).  Two procedures ensure accurate conversions: 1) RESET the 

position registers at an initial calibration position where all angles, θ, are zero 2) avoid crashing 

into hard stops. 
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Motor Joint Steps/Revolution Steps per 

Radian 

Steps per 

Degree 

1 Base 7072 1125 19.64 

2 Shoulder 7072 1125 19.64 

3 Elbow 4158 661.2 11.55 

4 Right Wrist 1536 241 4.27 

5 Left Wrist 1536 241 4.27 

Table 4-1 Conversion factors between motor steps and revolute joint angles. 

  

Formulae to convert steps to angles are as follows.  These account for the couple joints as well. 

 Base � θ� � J� Shoulder � θ� � � J� Elbow � θ� � � J� Pitch, P �  �0.5�J ! J"# �  �0.5�θ ! θ"# Roll, R �  0.5�J � J"# � 0.5�θ � θ"# 

Eqn 1 

Eqn 2 

Eqn 3 

Eqn 4 

Eqn 5 

  

Where J is an internal position register value.  Negative signs, while absent in the manual, 

maintain the sign convention established in Figure 4-2 and Figure 4-3.  Figure 4-3 shows the 

definition of pitch and roll. 
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Figure 4-2  (above)  Microbot supplied Kinematic Model of the Teachmover Arm. 

 

 

Figure 4-3  Microbot definition of pitch and roll angles. 
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Link lengths, distance between each joint, are indicated by the constants H, L and LL as 

shown in Figure 4-2 and Table 4-2.  H is the distance from the table top to shoulder joint 

centerline; L is the distance from the shoulder joint to elbow and elbow to wrist; LL is the 

distance from the wrist to finger center, when the fingers are separated by 1.5 inches or are 

roughly parallel. 

 

Segment Length (inch) Length (mm) 

H 7.68 195.0 

L 7.00 177.8 

LL 3.80 96.5 

Table 4-2  Lengths of Teachmover Arm members. 

 

Forward Kinematics 

 Forward kinematics implies determining X, Y, Z, pitch and roll of the end point given 

joint angles θ1 → 5.  The end point is the center point between the two fingers and will hence forth 

be the location of interest.  Solving the forward kinematics is easy once all physical relationships 

are defined.  Start the forward solution by finding the height of the end point above the table, Z, a 

visual aid is provided in Figure 4-4. 

 Z � H ! L sinθ� !  L sinθ� !  LL sin�P# Eqn 6 

 

Next, find the horizontal distance of the end point from the base, defined as the 

intermediate value, RR.  Again, a visual aid is provided in Figure 4-4 and Figure 4-5. 

 RR � L cosθ� !  L cosθ� !  LL cos�P# Eqn 7 

 

 Finally, calculate X and Y using the intermediate value RR. 

 X � RR cosθ� Y � RR sin θ� 

Eqn 8 

Eqn 9 

 

 P and R are defined in Eqn 4 and Eqn 5. 
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This concludes the forward kinematic solution derivation.  It is based on basic geometry 

and trigonometry.  All notation is consistent with the manual.  Eqn 1 → Eqn 9 in this thesis are 

similar to Eqn 1 → Eqn 7 in the manual, however, in the next section, on inverse kinematics, the 

derivation differs markedly.  

 

 

 

Figure 4-4  (above) Microbot supplied side view of kinematic model. 
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Figure 4-5  Microbot supplied top view of kinematic model. 

Inverse Kinematics 

One definition for inverse kinematics is – the process of determining the parameters of a 

jointed flexible object (a kinematic chain) in order to achieve a desired pose (Inverse 

kinematics.2010).  This section will demonstrate one method for calculating the inverse 

kinematics.  However, before beginning, a few more physical relations need to be defined. 

 “In practice it is difficult to distinguish between positive and negative roll angles (i.e. 

±90º) by looking at the hand” according to Appendix D page 12 (Microbot, 1984).  To eliminate 

ambiguity, the direction of the roll vector is marked with a bull’s-eye, according to the 

convention commonly used to indicate a vector emanating from a surface.  Figure 4-6 shows the 

bull’s eye, on top of the hand, which is visible when the wrist is oriented at 0º.  0º corresponds to 

the orientation when the wrist cable turnbuckles are aligned, Figure 4-7. 
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Figure 4-6  (above) Roll vector identifying wrist/hand at 0º. 

 

 

Figure 4-7  Microbot supplied images showing turnbuckle orientation at 0º. 

 Certain applications, such as playing games, drawing, sliding objects, assembling 

structures or removing a peg from a hole, require precise and often linear movements.  In these 

cases it is “sometimes [...] useful to express “roll” with respect to [the] Cartesian frame rather 

than with respect to the arm” as suggested in Appendix D page 14 (Microbot, 1984).  The 

manual suggests setting P = –90º (hand pointed down) as a reference position and measuring 

“Cartesian roll” with respect to the x-axis, as is usual.  The Cartesian roll convention used here 
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differs from that described in the manual, the current convention is shown in Figure 4-8.  In the 

figure: pitch = –90º, roll in Cartesian frame ≡ R’ and roll with respect to the arm ≡ R. 

 

 

Figure 4-8  New top view of the arm. 

 

 Writing a single roll equation, valid for both the arm and Cartesian frames, is made 

possible by introducing “special” variable R1 in Eqn 10. 

 roll � R ! R1 , θ� Eqn 10 

 

Where   R1 = 1 if roll is with respect to Cartesian frame 

R1 = 0 if roll is with respect to the arm frame 

 

 When R1 = 1 the Cartesian roll reported by Eqn 10 is visualized by projecting the vector 

in Figure 4-6 into the X-Y plane and measuring X to Y as is usual.  Unfortunately, at high pitch 

and roll angles the simplicity of Eqn 10 breaks down. 

 These new physical relations aid in solving the inverse kinematics.  Solving the inverse 

kinematics is determining joint angles θ1 → 5 given X, Y, Z, pitch and roll of the end point. 

 Start the inverse solution by finding the base angle, θ1 and radius vector, RR, Figure 4-9. 
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Figure 4-9  Microbot supplied top view of arm. 

 RR � -x� ! y� 

 

θ� � tan0� 1yx2 

 

Eqn 11 

 

Eqn 12 

 

Next, find θ4 and θ5 from P and R, pitch and roll, respectively by using Eqn 4 and Eqn 5.  

Then substituting in Eqn 10 makes: 

 θ" � �P � R ! R1 , θ� θ � �P ! R � R1 , θ� 

Eqn 13 

Eqn 14 

 

 Then work back from the coordinates of the end point to those of the wrist.  Letting Re 

and Ze be the end point coordinates, calculate the wrist coordinates, Rw and Zw respectively, 

using Eqn 15 and Eqn 16 or Figure 4-10.  Distances in Figure 4-10 are measured vertically along 

the z-axis and horizontally along the radius from the base (r-axis). 
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Figure 4-10  Microbot supplied side view of hand triangle used to find Rw and Zw. 

 R3 � R4 �  LL cos P Z3 � Z4 �  LL sin P 

Eqn 15 

Eqn 16 

 

 Finally, find θ2 and θ3, the shoulder and elbow angles, respectively.  Steps for this differ 

markedly from the manual’s derivation.  Many new variables are defined to aid the derivation.  A 

single picture, Figure 4-11, explains the new variables and how to obtain answers graphically. 

 

Figure 4-11  Shoulder-Elbow-Wrist triangle. 



33 

 New variables introduced in Figure 4-11 include:  

r0 – distance from the shoulder to wrist, same as rw 

z0 – height of wrist above the shoulder, Zw – H 

b – base of congruent right triangles formed by bisecting the isosceles shoulder- 

elbow-wrist triangle 

α – one angle of the congruent right triangles with shoulder-elbow as hypotenuse 

β – angle of the shoulder-elbow-wrist isosceles triangle above the horizontal 

 

 Using these new variables solve for θ2 and θ3 as follows.  Step one, solve for b noting it is 

part of the hypotenuse of a right triangle. 

 

b � -r5� ! z5�2  
Eqn 17 

 

 

 Step two, solve for β noting it is part of the same right triangle as b. 

 

β � tan0� 9z5r5: 
Eqn 18 

 

 

 Step three, solve for α, having solved for b and knowing l, a.k.a. L from Table 4-2. 

 

α � cos0� 9bL: 
Eqn 19 

 

 

 Careful inspection of Figure 4-11 shows θ2 and θ3 are composed of α and β  

 θ� � α ! β θ� � α � β 

Eqn 20 

Eqn 21 

 

 Note that θ3 was previously defined as the angle of the elbow above the horizontal hence 

the sign must be changed when coding. 
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 Table 4-3 contains a summary of this derivation.  Solving the inverse kinematics this way 

is simple if not general.  The next section covers one additional consideration used when doing 

high precision work. 

 

Θ1 θ� � tan0� 1yx2 

Θ2 θ� � α ! β 

Θ3 θ� � α � β 

Θ4 θ" � �p � r ! r1 , θ� 

Θ5 θ � �p ! r � r1 , θ� 

Table 4-3  Summary of θ calculations. 

 

Further Consideration 

 Hand length, LL, actually varies slightly with hand opening, see Figure 4-6, so the value 

given in Table 4-2 is not a constant.  Though the variation is small, it may be critical.  “The hand 

length, LL, may be expressed as the sum of a fixed length, L1, and a varying length that depends 

on hand opening, G” according to the manual Appendix D page 26 (Microbot, 1984). 

 

LL � L� ! =L�� ! �G � G5#�5  

 

Eqn 22 

 

 

 Where hand opening, G, may be converted to motor steps and vice-versa by using 

proportionality constant: 371 steps/inch or (14.6 steps/mm). 

 

Constant Empirical (inch) Metric (mm) 

L1
 2.097 53.3 

L2 1.7 43.2 

G0 1.52 38.6 

Table 4-4  Constants of the varying hand length equation. 
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 In  Eqn 22 and Table 4-4 the value of L1 and the denominator of 5 are different than those 

in the manual.  Some adjustments are needed to ensure maximum possible reach and realistic 

length variation.  The geometry that produced the variation is shown in Figure 4-12.  Results of 

the heuristically arrived at modified values are shown in Figure 4-13. 

 

 

Figure 4-12  Microbot picture of the geometry that produces a variable hand length. 
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Figure 4-13  Hand Length vs Opening 

 

Table 4-3 contains all the equations necessary for inverse kinematics.  The derivation is 

based on the principles of kinematic decoupling covered in (Spong, 2006), simplified in the 

Teachmover manual and further simplified by the author.  Figures and explanations have been 

included to aid the readers understanding.  In Appendix A, these equations are derived using 

matrix math and formatted using Denavit-Hartenberg parameterization, which is understood by a 

large group of mechanical engineers.  The communication protocols and factory software will be 

dealt with in the next chapter. 

  

80

82

84

86

88

90

92

94

96

98

0 10 20 30 40 50 60 70 80

Le
n

g
th

(m
m

)

Opening (mm)

Hand Length vs Opening

LL max LL Original



 

37 

Chapter 5 Communication Protocols and Factory Software 

 

This chapter provides background into a Microbot Teachmover’s communication 

protocol and factory software.  It touches on all the commands necessary to interface a basic 

drawing program.   

Generally, each robot company creates their own robot communication protocol or 

language; for example industrial robot manufactures such as Epson, Fanuc, Kuka and Panasonic 

have their proprietary control software.  Machine tool makers such as Fanuc and Siemens have 

packages that work well across many physical platforms but are often black boxes, which cannot 

talk to each other.  Printers are much closer to universality.  Manipulating paper, toner and ink in 

most modern printers is the direct result of obeying industry standard software definitions such 

as post-script (PS) or printer-command-language (PCL).  Teachmovers come standard with two 

protocols: one that responds to Teach Control buttons presses, and another for RS-232 serial 

linking.  After finishing this chapter, users will be familiar with both. 

Teach Control 
 

Most users interface with Teachmovers using the hand-held Teach Control, as shown in 

Figure 5-1.  Users simply press buttons to move the joints others activate “mode” to enable the 

control functions and then write simple programs.  Available control functions are listed and 

described in Table 5-1. 
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Figure 5-1  Handheld teach control.  (Almost actual size.) 
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COMMAND FUNCTION SYNTAX/DETAILS 

CLEAR Erased entire program To activate, hold down 

MODE key & press CLEAR. 

FREE Turns off all motor currents. Enables manual positioning.  

No program steps are created. 

GRIP Closes the gripper. Builds up 1 pound of grip 

force.  Moves the hand motor 

32 half-steps past the point 

where grip switch closes. 

JUMP* 

 

 

 

 

*  Should not be used.  

Conditional (or unconditional) 

branching. 

Two numerical entries (press 

MODE key b/w): 

1
st
 entry-jump condition: 

0: grip switch open 

1 → 7: user input bit 

8: never OR 9: always 

2
nd

 entry: step to jump to. 

MOVE Activates joint-control (arm 

motion) keys. 

Like train only does NOT: 

change internal position 

registers; allow positions to be 

recorded; make program steps. 

MODE Stops arm. Exits: TRAIN, MOVE and 

ENTER modes.  

OUT Designates which output bit to 

turn on. 

Two numerical entries (press 

MODE key b/w): 

1
st
 entry: 0: MODE light 

1 → 5 user output bits 

6: TRAIN light 

7: RUN light 

8: ENTER light 

2
nd

 entry: 0 or 1 for lights off 

or on, respectively. 

PAUSE Pauses arm for # seconds Numerical entry 0 → 255. 

POINT Sets program pointer to # step Numerical entry. 

RUN Runs current program. If running, stops at end of 

current step. 

SPEED Sets speed of arm motion. 0 (slowest) to 15 (fastest). 

STEP Do current prgm, step by step. Moves arm to next position. 

TRAIN Activates joint-control (arm 

motion) keys. 

Press REC for ea position to 

be saved.  REC overwrites 

current step and increments 

pointer.  Power cycle = train, 

pointer and internal position 

registers = 0. 

ZERO Zeros sequence pointer and 

internal position registers. 

To activate, hold down 

MODE key & press ZERO. 

Table 5-1  Teachmover teach control command summary, via the manual F.3. 
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Writing trial programs using the commands listed in Table 5-1 is easy.  For example, the 

program shown below moves each joint a few degrees to give the impression the robot is 

waving.  Upon completing Step 7 the green RUN light should be lit and Auto will repeat 

oscillations in each joint until interrupted or powered off. 

 

1. Press TRAIN key 

2. Swivel the base by pressing one of the B keys. 

3. Press the REC key. 

4. Swivel the base back past the starting point by pressing the other B key. 

5. Press the REC key. 

6. Repeat steps 2 → 5 for each remaining joint S,E,P,R,G. 

7. Press the MODE key and then the RUN key.  (The RUN key is physically 

the same as the REC key once the mode modifier is activated. 

 

While the trial program is useful, more involved programs often need to be written out or 

recorded on paper prior to entry.  Microbot includes a convenient “Programming Worksheet” 

where someone can write out their programs, Figure 5-2.  More complex programs, such as 

Microbot’s Block Stacking program, require flow charts, Figure 5-3.  Program complexity and 

therefore size can quickly out-grow the available onboard RAM.  At this point, users are forced 

to interface Teachmovers with a computer.  By interfacing to a computer a whole new set of 

command and features are made available as will be explored in the following pages.  

 

 

Figure 5-2  Microbot provided Programming Worksheet, via the manual F.13. 
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Figure 5-3  Microbot flowchart of their Block Stacking Program, via the manual 6.36. 

Serial Communication 
 

Communicating with this robot via serial requires some setup as serial devices are not 

generally plug-and-play.  Exact communication protocol is covered by the Teachmover manual 

in Chapter 5 on “Electronics and Interfacing” and Chapter 7 on “Operation from a Host 

Computer” (Microbot, 1984).  One starts by setting a baud rate and deciding if multiple robots 

are to be linked.  Settings such as data format, interface signals, opening ports and testing the 

configuration are static and well documented.  For this thesis, one Teachmover with the max 

baud rate of 9600bps and no flow control is used.  To test the configuration an @CLOSE 

command is sent down the pipeline via HyperTerminal then a response will be issued: 0 = bad 

syntax, 1 = ok and 2 = stopped 
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Wiring is a critical part of proper setup.  A null modem is vital to successful serial 

communication interfacing.  Figure 5-4 shows the serial cabling.  Standard DB-9 from a host 

converts to DB-25, passes through a surge protector then the null modem. 

 

 

Figure 5-4  Serial communication solution. 

 

Table 5-2 provides a listing the serial interface commands. 
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COMMAND FUNCTION SYNTAX/DETAILS 

1) <CR> = Carriage Return 

2) Arm returns [0<CR>] if command has syntax error, [1<CR>] after command is exe and 

[2<CR>] if STOP button is pressed before completing exe (STEP and CLOSE only) 

@ARM Can change recognition 

character from @ to anything 

@ARM <CHAR> <CR> 

where char is any but <CR> 

@CLOSE Close gripper until grip switch 

is on. 

@CLOSE <SP> <CR> where 

SP = optional speed value 

@DELAY Inserts a delay b/w TX chars @DELAY <N> <CR> where 

N is heuristically determined. 

@QDUMP Reads current program from 

RAM 

@QDUMP <CR> Returns 

char string for ea program 

step. See Ch 7 Table 9. 

@QWRITE Writes a program step to 

RAM 

@QWRITE 

<N>,<L1>,...<L7> <CR> 

where N is line number. 

@READ Reads internal position 

register values, gives last key 

pressed and input bit values. 

@READ <CR> returns 

<K1>...<K6>,<I> <CR> 

where K = pos register and I = 

Last Key *256 + Input Byte, 

see App F.5 

@RESET Zeros the internal position 

registers and turns off motor 

current. 

@RESET <CR> 

@SET Sets arm speed and activates 

joint control keys and teach 

control. 

@SET <SP> <CR> where SP 

= optional speed value. Ctrl 

returned to host when REC or 

MODE key pressed. 

@STEP Sets arm speed, moves joints 

and sets output bits. 

@STEP <SP>, 

<J1>...<J6>,<OUT><CR> 

where SP = optional speed 

value. 

J1-J6 = Motor half-steps base, 

shoulder, elbow, R wrist, L 

wrist and hand respectively, 

see App F.5 for more details. 

OUT = Opt decimal # whose 

binary equivalent specifies 

output bits (App F item G). 

Table 5-2  Serial interface command summary, via the manual F.5. 

 

With the new set of serial interface commands writing more sophisticated programs is 

possible.  To demonstrate the basics of serial programming parts of an enhanced block stacking 

program, written in a MATLAB script, are shown in Figure 5-5.  Notice in each step uses one or 
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several of the commands listed in Table 5-2.  Figure 5-6 shows the grip function, which also 

uses several of the commands listed in Table 5-2.  grip is integral to block stacking and serves a 

dual purpose: it measures and grasps blocks.  By combining commands and utilizing the 

computer’s memory, actions such as measuring, stacking blocks and graceful error handling are 

possible.  Coding like this is only possible once users have graduated to the software 

programming environment and are talking to Teachmovers via serial commands.  A video 

showing the enhanced block stacking program in action is available online (McCrate, 2009).  

 
fopen(micro); % Open COM port 

  
% zeros the position registers 
cmd = sprintf('%cRESET',arm); 
fprintf(micro,cmd); 
[tline,count,msg] = fgetl(micro); 

  
% visit each block and measure 
for ii = 1:3  % 3 blocks will be measured 

[...] 

% measure block size 

[tline,count,msg,b(ii)] = grip(arm); 
if tline == '2', break, end; 
[...] 

end 

  
[s,index] = sort(b,'descend'); 

  
for ii = 1:length(s) 
    stack(ii) = sum(s(1:ii));   % height of n blocks 
end 

  
ii = 2; % start stacking from the 2nd largest block 

  
% visit ~each block in decending order 
while (ii <= length(s)) && (s(ii) > 10)  % blocks exist & are > 10 mm 
 [...]         
end 

  
% move to home 
[tline,count,msg] = pabs(arm,home); 
if tline == '2', break, end; 

  
fclose(micro); 

Figure 5-5  Enhanced block stacking program. 
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function [tline,count,msg,mm] = grip(arm); 

  
% grip(arm) 
% mimics teach control grip functionality = CLOSE - 32 hsteps 
% returns std comments AND block size  

  
global micro;   % make global micro available to this function 
global serialsp % make global serialsp available to this func 

  
% close the gripper 
cmd = sprintf('%cCLOSE',arm); 
fprintf(micro,cmd); 
[tline,count,msg] = fgetl(micro); 
if tline == '2', return, end; 

  
% build up 1 lb of force by squeezing 32 hsteps 
[cmd, errmsg] = sprintf('%cSTEP %i %i,%i,%i,%i,%i,%i, 

0',arm,serialsp,0,0,0,0,0,0); 
fprintf(micro,cmd); 
[tline,count,msg] = fgetl(micro); 

  
% read position registers 
cmd = sprintf('%cREAD',arm); 
fprintf(micro,cmd); 
[tline,count,msg] = fgetl(micro); 
if tline == '2', return, end; 
% reads and formats data sent after issuing read cmd 
[c,count,msg] = fscanf(micro,'%i,%i,%i,%i,%i,%i,%i'); 

  
% use hand and elbow registers to calc object width 
mm = (c(6)-c(3)) / 371 * 25.4; 

Figure 5-6  Expansion of the grip() function used in Figure 5-5. 

 

This concludes the chapter on a Teachmover’s communication protocols and factory 

software.  It opened with an explanation of the hardware interface and pseudo code for a short 

joint oscillating trial program.  Focus then shifted to serial interfacing.  Code for an advanced 

block stacking program is shown and this program is demoed in a short video.  This code and 

block stacking demo are important because they showcase all the commands necessary to 

interface a basic drawing program.  The next chapter explores how to build the drawing 

HMI/GUI using MATLAB. 
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Chapter 6 New User Interface and Software 

 

To make Microbot Teachmovers pen images requires hardware and software capabilities 

beyond those on the factory platform.  Improvements to the hardware are covered in other 

chapters.  This chapter covers improvements to the software, specifically the user interface (UI).  

The new software-based UI, or HMI/GUI, allows users to make Teachmovers behave similar to 

the automaton in The Invention of Hugo Cabret, however some improvements are made that 

enable users to pen random images as well.  This chapter introduces the capabilities and 

improvements of the new UI system by presenting them in a demonstration program. 

Demo Program 
Users begin the demo, and therefore the act of drawing, by running a program coded with 

MATLAB.  When the demo program starts, it presents users with a popup menu, Figure 6-1.  

The menu contains a list of preprogrammed images.  To initiate drawing, users pick what image 

they want from the menu.  This action’s analogue from a century ago would be replacing a set of 

cams and/or gear trains and winding springs.  Like many drawing automata of old, this Microbot 

based automaton can draw several images.  Only a few elementary shapes are used for in the 

demonstration; these include a: circle, square, fish, heart and house, as shown in Figure 6-2 to 

Figure 6-11, respectively.  Images in the left column were created via the sixth and last option 

listed in the menu below.  Images in the right column were drawn by a microbot. 

 

 

Figure 6-1  Menu used to determine images or drawing type. 
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Commanded via MATLAB 

 

Figure 6-2  Circle 
 

 

Figure 6-3  Square 

 

Figure 6-4  Fish 
 

Drawn by a Teachmover 

 
Figure 6-5  Circle 

 

 
Figure 6-6  Square 

 

 
Figure 6-7  Fish 
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Commanded via MATLAB 

 

Figure 6-8  Heart 

 

Figure 6-9  House 

Drawn by a Teachmover 

 

 
Figure 6-10  Heart 

 

 
Figure 6-11  House 

 

Unlike automata built around the turn of the 20
th

 century, users of this Teachmover-based 

automaton can create their own drawing, using a connect-the-dots interface.  Clicking “Create 

Your Own” from the first menu, Figure 6-1, activates the connect-the-dots menus.  The second 

menu, Figure 6-12, is used to establish units, giving users a quantitative feel for size.  The third 

menu, Figure 6-13, is used to establish roll frame.  Roll frame is described in Chapter 4 and it has 

little bearing on penned images. 
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Figure 6-12  Menu to establish units. 

 

Figure 6-13  Menu to choose roll frame 

 

After answering the questions in menus two and three, above, a new much larger figure 

window opens, Figure 6-14, below, which has been made to look like MATLAB’s Interactive 

Plotting example.  People are charged with creating their desired image using the large figure 

window.  Directions are given at the top of the screen and simultaneously in the MATLAB 

Command Window.  The directions read, users left-click a mouse to create points and right-click 

to complete the process.  Figure 6-15 shows an example image. 

 

Figure 6-14  Connect-the-dots interface window. 
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Figure 6-15  Example image, a palm tree! 

 

Before the Teachmover will commence drawing its current position or pose must be 

entered into the program.  Generally this is accomplished by selecting a location from one last 

menu, Figure 6-16.  Three positions are very common: Cal Pt, Cal Pt-- and Home.  Cal Pt is the 

calibration point as shown in Figure 4-1.  This is the best place to reset the position registers after 

major slipping or a hard crash.  Cal Pt-- is the Cartesian point (X,Y,Z) = (2,0,3) inch.  In this 

position the pen is removed from the canvass and the arm is retracted, giving any audience a 

clear view of all freshly finished art work.  Home is where all joint angles are zero: at this point 

the arm is fully extended marking a good opportunity to exchange the drawing utensil.  Users are 

tasked with ensuring the robot is in one of these three positions prior to pushing the proper menu 

button.  The next section contains a description of some of the demo program code. 
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Figure 6-16  Menu to define current position. 
 

Demo Program Functions 
Here, in this section, is a list of functions that directly support the drawing portion of the 

demo program. 

Grip.m 
Grip is written to mimic the Teach Control function named grip.  First, it closes the gripper until 

the close switch is activated.  Then it measures the block.  Finally, it builds up one pound of grip 

force by squeezing an additional 32 half steps. 

function [tline,count,msg,mm] = grip(arm); 
% grip(arm) 
% mimics teach control grip functionality = CLOSE - 32 hsteps 
% returns std comments AND block size  

Prel.m 
Prel basically duplicates the Teach Control buttons.  It will move the motors a commanded 

number of half-steps. 

function  [tline,count,msg] = prel(arm,p) 

% Position Relative (uncouples joints) 
% prel(arm,[p]) 
% where p = B,S,E,P,R,G 
% motor steps NOT angles 
% make sure ONLY integers are sent 

Pabs.m 
Pabs is a function written to “force” the motors to turn until the internal position registers match 

the commanded values. 

function  [tline,count,msg] = pabs(arm,p) 
% Position ABSolute 
% pabs(arm,p) 
% p = [base,shoulder,elbow,R wrist,L wrist,grip] 
% motor steps NOT angles 
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Cart_disp.m 
Cart_disp stands for Cartesian Display.  This function reads the Teachmovers internal position 

registers then calculates the forward kinematics before returning the robots current configuration. 

function [disp] = cart_disp(arm) 

% [disp] = cart_disp(arm); 
% Displays current X,Y,Z,P,R,G 

% X,Y,Z,P,R,G are Cartesian Coordinates then Pitch, Roll and grip width 

Prel_cart.m 
Prel_cart stands for Position Relative Cartesian.  As the name implies, this function repositions 

the arm in the Cartesian frame by taking Cartesian inputs, e.g. move +Y by 3mm. 

function  [tline,count,msg] = prel_cart(arm,pos) 

% Cartesian coordinate based Relative positioning 
% prel_cart(arm,[pos]) 
% where pos = B,S,E,P,R,G as shown on the Teach Control 

Cart_cmd.m 
Cart_cmd stands for Cartesian Command.  This function calculates the inverse kinematics and 

required motor steps to move from home (where all angles and registers are zeroed) to the 

desired pose. 

function [cmd] = cart_cmd(pos) 

% Commanded motor steps needed to go from home (encoders = 0) to pos 
% [J1,J2,J3,J4,J5,J6] = cart_cmd([pos]); 
% pos = [x,y,z,p,r,g]; 
% J = [base,shoulder,elbow,R wrist, L wrist,grip] 

Apporach.m 
Approach is a written to trace unknown manifolds using the “touch sensor” shown in Figure 3-3. 

 
function [tline,count,msg] = approach(arm); 
% approach(arm) 
% v.1 removes pen from paper then moves -z until the "touch sensor" trips 
% v.3 rise until not touching, then touch, then back off one “step” 
% returns std comments 

Decode.m 
The decode function interprets the last integer returned after issuing a READ command.  This 

integer contains two types of information: the state of the Input Pins and the last Teach Control 

button that was pressed. 

  
function [bits,currentkey] = decode(c); 

  
% decodes the last integer of READ 
% things differ from the manual e.g. inputs are grounded not pushed high 

  
% their eqn I = LastKey*256 + Input Byte 
% my eqn    I = CurrentKey*256 + 255 - 2^Input Bit 
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% bits are NORMALLY HIGH 
% bits = [0,1,2,3,4,5,6,7] 
% where 0 = closed indicator and 1-7 = user inputs 

  
% current key, see table below 

1 = train 8 = step 

2 = pause 9 = point 

3 = grip 10 = jump 

4 = out 11 = clear 

5 = free 12 = zero 

6 = move 13 = speed 

7 = stop 14 = run 

 

This section shows the quantity and format of each function directly responsible for 

drawing.  The theory supporting these functions can be found in Chapter 4 and Appendix A.  All 

these functions are only called once the menus and other image acquisition portions of the demo 

program are completed. 

Chapter Summary 
In this chapter the new UI is introduced, as a demo program.  The MATLAB based 

interface, software written to generate the motion commands and functions implemented in the 

process are all introduced as well.  This chapter can serve as a stand-alone user manual for the 

thesis demonstration.  The next chapter outlines how to build a fuzzy logic controller for the 

Microbot Teachmover.  The fuzzy controller serves a dual role: it is vital to increasing the mean 

time between errant drawings and increases real-world throughput. 
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Chapter 7 Fuzzy Logic Control 

 

Teachmover by Microbot is an economical, mechanically sound academic and industrial 

teaching tool however its 1980’s era motion control system goes unstable quite often at high 

speeds.  To eliminate instability a new controller was designed in MATLAB® using their Fuzzy 

Logic Toolbox™.  To aid the fuzzy controller with observability, several sensors are added to 

Auto.  Using input from these sensors, membership functions and a control rule base are tuned 

heuristically.  When enabled the new fuzzy controller augments speed commands resulting in 

very fluid motion. 

The University of Cincinnati has, in their Robotics laboratory, several Microbot made 

Teachmover robots.  They are very light, being constructed mostly from sheet metal and aero-

space cabling actuated by stepper motors.  Unfortunately, the robots’ Achilles’ heel is power and 

stability.  At high speed or under load/resistance, motors vibrate violently and the pulse counted 

position registers lose track of position.  Of course, upgrading to powerful servo motors can 

solve these problems however the cost, power and time involved are all unwanted.  Fortunately, 

any trained observer can detect the unstable and marginally stable states biologically using audio 

or tactical input.  One can quantify these states using a microphone or accelerometer.  Realizing 

and recreating our inherent ability to detect and attenuate speed based on incomplete qualitative 

data inspired and guided the current work. 

Methodology and Materials 
Implementing the fuzzy controller required 9 phases:  

Part 1 Explore MATLAB’s Data Acquisition Toolbox 

Part 2 Acquire accelerometer/microphone 

Part 3 Record accelerometer/microphone data via MATLAB 

Part 4 Prepare a serial communication script 

Part 5 Send the Microbot Teachmover a serial command 

Part 6 Explore MATLAB’s Fuzzy Logic Toolbox 

Part 7 Form anecdotal/heuristic control functions 

Part 8 Code control functions using Fuzzy logic 

Part 9 Combine sensor data + fuzzy functions/rules = completed fuzzy controller 
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The following subsections explore the audio setup, first controller and fuzzy controller 

such that anyone “skilled in the art” can reproduce the results (United States Patent and 

Trademark Office, 2005). 

 

Audio: Setup and Acquisition 

 

Figure 7-1  Representative audio hardware.   

 A high level schematic of the audio capturing equipment is shown in Figure 7-1.  The 

schematic includes a wireless microphone transmitter (left), its receiver (center) and a Behringer 

mixing box (right) for preprocessing/filtering.  The mixer feeds directly into a computer sound 

card.  A microphone is used in lieu of accelerometers for though they both capture similar 

vibration information the microphone is less expensive.  Code written to invoke the microphone 

is shown below. 

 

%%%%%  Create analog input object via a sound card and config 
ai = analoginput('winsound'); 
addchannel(ai, 1); 

  
Fs = 11025;                     % Sampling freq 
ai.SampleRate = Fs;             % Samplin freq again 
ai.SamplesPerTrigger = Inf;     % no recording limit 
ai.TriggerType = 'Immediate';   % start on start(ia) 
ai.TriggerRepeat = Inf;         % no repeat limit 

 

% Start analoginput obj w/ predefined properties 
start(ai) 
stop(ai) % when finished 

 
% gather all available data 
data = getdata(ai,ai.SamplesAvailable); 
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First Pass Controller 
 Before building the fuzzy controller all proposed rules were tested using a simple bang-

bang controller.  Bang-bang controllers have – at least – two distinct advantages: they are time-

optimal for a certain class of problems such as spacecraft-satellite attitude adjustment and have 

simple designs (Nagi, Perumal, & Nagi, 2009).  The code for this simple controller is shown 

below. 

 

if RMS > .007, serialsp = 239 else serialsp = 245, end; 

 

A more graduated control law can be written that readily adjusts to microphone 

amplitude levels.  The single line conditional would read: 

 

if audio_amplitude >= large, serialsp-- else serialsp++, end;  

 

Fuzzy Controller 
 The fuzzy controller is built using lessons learnt while working with the bang-bang 

controller.  This fuzzy controller is designed as a MISO system (multi-input single-output): audio 

RMS and current serial speed are fed in and a new serial speed is spit out.  To simplify 

fuzzification only two membership curves are used for each input; it is important to properly 

tune them.  Tuned values can be seen in Figure 7-2 and Figure 7-3. 

 

Figure 7-2  Audio, input variable, membership functions. 
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Figure 7-3  Serial speed, input variable, membership functions. 

 

 Only two membership curves are used for the output variable NewSerialSpeed.  Their 

shapes can be seen in Figure 7-4. 

 

 

Figure 7-4  NewSerialSpeed, output, membership functions. 



 

58 

To develop a good rule base recall the rules previously implemented in the bang-bang 

controller.  It had two simple rules: loud = slower; quiet = faster.  These same two rules are used 

in the fuzzy controller.  A third “performance enhancing” rule – of less weight – is added to the 

fuzzy controller to bias the speed upward without sacrificing stability.  All rules are visible in 

Figure 7-5. 

 

Figure 7-5  Fuzzy Rule base.  Note number three is weighted less (0.5). 

 

Having only three rules accelerates inferencing and defuzzifying.  Execution can also be 

sped up by making the fuzzy system global, while by-passing all evalfis()argument checks.  

Code for by-passing all evalfis()argument checks is shown below. 

%% Sugeno Fuzzy Speed;  

 

fluid = readfis('microctrl_s'); 
 

serialsp = ceil(evalfismex([RMS serialsp],fluid,101)) 

 

Once tuned, the fuzzy controller(s) performed well.  The Sugeno Fuzzy Inference System 

(FIS) produces a more graduated response surface than the Mamdani FIS.  The Mambani surface 

resembles a pure bang-bang controller.  See Figure 7-6 and Figure 7-7. 
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Figure 7-6  A Mamdani controller produces a nearly binary response surface. 

 

 

Figure 7-7  A Sugeno controller produces a partially graduated response surface.  
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The fuzzy controller runs well and yields predictable/steady behavior.  One can see this 

in Figure 7-8 where three consecutive runs from a demo run are aggregated for easy viewing.  

Recall the goal is to use time histories of the audio signal to modify subsequent speed 

commands.  Table 7-1 shows the controller inputs and outputs numerically. 

 

 

Figure 7-8  Consecutive Fuzzy runs oscillate about an RMS threshold. 

 

Run RMS Resulting serial speed 

Init – 239 

1 0.0044 245 

2 0.0078 240 

3 0.0060 245 

Table 7-1  Tabular form of RMS data found in Figure 7-8. 

 

 The fuzzy controller performs more favorably than the graduated bang-bang controller 

and the uncontrolled system.  The graduated bang-bang controller, used here, has two 

shortcomings: users must choose an initial speed and the controller migrates from this initial 

value slowly.  Therefore, an incorrect initial speed value will result in poor performance, 
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initially.  However, the bang-bang controller does outperform the uncontrolled system.  When 

running without a controller users have two options: slow and stable or fast and unstable.  There 

is no scope for adjusting on the fly meaning either quality or time will be lost. 

 

Chapter Summary 
 

Teachmover by Microbot, is a cheap and mechanically robust teaching tool.  It has held 

up well over the years however its 1980’s era motion controller needs help because it goes 

unstable at high speeds.  This chapter showed how to solve the instability problem.  It starts with 

describing a way to increase observability, transitions to designing a fuzzy logic controller and 

ultimately shows data from a demo run. 

There are several places where this fuzzy work can be improved.  Transforming 

measured data into the frequency-domain and then characterizing the broader-band noise of 

faster runs should be more robust since it is immune to audio amplitude.  Figure 7-9 and Figure 

7-10 show the frequency-domain contrast that gives this proposed method validity.  Next, the 

current fuzzy controller, with only two membership functions curves per input, is a crude 

controller.  More membership functions will widen the performance envelop.  Finally, this work 

should be compared to other control methods.  In the next and final chapter, conclusions and 

suggestions for future work will be discussed. 
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Figure 7-9  Typical FFT of a slow run. 

 

 
Figure 7-10  Typical FFT of a fast run.  Notice the broad-band noise and spike ±1200 Hz.  
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Chapter 8 Contributions and Recommendations 

 

This chapter contains a summary of the contributions made in this thesis work and 

includes recommendations for future work. 

 

Contributions 
Results of this thesis work include: 

A. Building a combination ball point pen/touch sensor that is used as the drawing utensil.  

The pen provides feedback necessary for rudementary compliance control. 

B. Solving the equations of motion, including forward and inverse kinematics, needed to 

control the robot arm’s position. 

C. Programming software, and a GUI, that allows people to make the robot draw both 

stored pictures and images created via user input.  The software includes functions for 

positioning with step counts, Cartesian positioning, grip width measuring and random 

surface tracing. 

D. Developing a fuzzy logic controller to improve the robot’s drawing ability.  The fuzzy 

controller uses a microphone for feedback and yields more rapid yet more stable 

movements, when compared to a bang-bang or uncontrolled system. 

These results are described in this document in the following way.  In Chapter 1, the 

focus is on understanding the “The Picasso Printer” approach and surveying different hardware 

options.  Chapter 2 presents an overview of humanoid robots, dating from the 15
th
 to the 21

st
 

Century.  Construction methodologies and capabilities are compared.  From this subset of robots 

a platform is selected based on its merits and availability. 

Chapter 3 contains a hardware description.  The description highlights key areas of the 

Microbot Teachmover design and all modifications necessary to ready it for drawing.  Proper 

maintenance is addressed as well. 

In Chapter 4 equations necessary to effectively position the end effecter are derived.  This 

derivation is based in geometry and trigonometry.  Starting from forward kinematics a 

framework is established and used to solve the inverse kinematics.  All conventions and 

assumptions are laid out.  Ultimately two tables contain the essential equations.  They are  

formatted such that they can be easily programmed.   
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Chapter 5 provides background into a Microbot Teachmover’s communication protocol 

and factory software.  Two communication protocols are introduced: teach control protocol and 

serial protocol.  The teach control protocol is included because it is the primary choice for most 

users.  The serial protocol approach is necessary to generate advance movements such as those 

used when drawing pictures.  Background into the factory software includes a table listing all 

available software based commands.  This chapter culminates with a short block stacking 

program that touches on all the commands necessary to interface a basic drawing program.   

Chapter 6 introduces the capabilities and improvements of a new User Interface (UI).  A 

demonstration shows how users interact with the UI from beginning to end.  By presenting the 

demo in this way, the chapter serves as a user manual.  Each function, called by demo program, 

is presented as well to show how user input is converted to output commands and ultimately, a 

drawing. 

In Chapter 7, a fuzzy logic controller is evaluated.  The fuzzy controller is implemented 

to ameliorate high speed instabilities.  Instabilities are detected using newly installed sensors, the 

data is processed in several ways and new speed commands are issued accordingly.  Results and 

data from test runs show the controller can effectively mitigate excessive vibration.  The 

controller therefore increases the mean time between failure and throughput. 

In summary, this thesis shows how to produce a robust robot capable of drawing pictures, 

that is easy to modify and can be used as a collegiate or K-12 teaching tool. 

 

Recommendations 
 Several recommendations for future work have been identified.  Broadly speaking, 

applications beyond those described here, applications that utilize the robot’s dexterity, should be 

explored.  As of this writing, a “Towers of Hanoi” program has been written based on the 

functions described in Part C above.  Other recommendations/suggestions/applications include: 

• Having a multi-color pallet 

• Making a more intuitive click-and-drag interface, as in (Fig, 2010) 

• Adding provisions for 3D sculpting 

• Fitting the robot onto a suck-puff system where it can be used for tasks like to elevator 

button pushing  
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Next, are several specific technical recommendations needed to achieve the proposed future 

work: 

• Design and build a better end-effecter 

• Add more sensors e.g a 6 DOF force-torque sensor 

• Code a multi-input/multi-output Artificial Neural Network Fuzzy Inference solver 
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Appendix A Generalized Kinematics 
 

“Formally, kinematics is that branch of mechanics that treats the phenomena of motion 

without regard to the cause of the motion.  In kinematics there is no reference to mass or force; 

the concern is only with relative positions and their changes.” (Bottema & Roth, 1979)  As 

Microbot Teachmovers are light, slow moving robot with minimal payload capabilities, focusing 

on kinematics makes sense.  In Chapter 4 Special Kinematics, for Teachmovers, both forward 

and inverse kinematics have been solved.  Those equations are valid for all Teachmovers, 

however the derivation methods lack generality and utilizes many simplifying assumptions and 

constraints.  Here, the forward and inverse kinematics are solved using generalized conventions 

and modern methods; specifically, forward kinematics are formulated based on Denavit-

Hartenberg’s convention while an artificial neural-network fuzzy inference system (ANFIS) is 

used for the inverse kinematic solution. 

Forward Kinematics based on Denavit-Hartenberg Parameterization 

Many conventions can be used to describe manipulator kinematics, there are Euler 

Angles; roll, pitch and yaw angles; axis/angle representations to name but a few.  One 

convention/method, known at the Denavit-Hartenberg parameterization, stands above the rest as 

being the most popular among robotists.  Denavit and Hartenberg build on the work of Reuleaux 

(Reuleaux, 1876).  All these works utilize homogeneous transformations, which are referred to as 

Special Euclidean Groups or dyadics in (Huston, 2001).  Denavit and Hartenberg’s abstract 

explains: 

 

A symbolic notation devised by Reuleaux to describe mechanisms did not recognize the 

necessary number of variables needed for complete description. A reconsideration of the 

problem leads to a symbolic notation which permits the complete description of the 

kinematic properties of all lower-pair mechanisms by means of equations. The symbolic 

notation also yields a method for studying lower-pair mechanisms by means of matrix 

algebra; two examples of application to space mechanisms are given. (Denavit & 

Hartenberg, 1955) 
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It would seem that in a 6DOF world six parameters/coefficients “constitutes the 

necessary and sufficient number” for a complete description of position and pose (Denavit & 

Hartenberg, 1955).  Using matrix notation, the special cases of pure translations or rotations can 

be represented as follows (note: standard right-hand coordinate systems are used, n1 = x-axis, n2 

= y-axis, n3 = z-axis, T ≡ translation, R ≡ rotation and finally the symbol inside the ( ) represents 

the angle or distance of action. 

 

?@�A# � B1 0 0 A0 1 0 00 0 1 00 0 0 1C 
 

?D�E# � B1 0 0 00 1 0 E0 0 1 00 0 0 1C 
 

?F�G# � B1 0 0 00 1 0 00 0 1 G0 0 0 1C 

H@�I# � B1 0 0 00 JKL�I# �MNO�I# 00 MNO�I# JKL�I# 00 0 0 1C 
 

 

HD�P# � B JKL�P# 0 MNO�P# 00 1 0 0�MNO�P# 0 JKL�P# 00 0 0 1C 
 

HF�Q# � BJKL�Q# �MNO�Q# 0 0MNO�Q# JKL�Q# 0 00 0 1 00 0 0 1C 
 

However, by careful selection of coordinate frame assignments “four coefficients suffice” 

(Denavit & Hartenberg, 1955).  Spong has this to say regarding existence and uniqueness, 

“Clearly it is not possible to represent any arbitrary homogeneous transformation using only four 

parameters (Spong, 2006).  Given two reference frames, 0 and 1, two conditions must be met:  

(DH1) axis x1 is perpendicular to axis z0 

(DH2) axis x1 intersects the z0 

Historically, the matrix result, after packaging each of the four parameters into one 

matrix, has been label “A.”  A systematic method for building A  matrices is given in (Paul, 

1981).  (Craig, 1986) expands upon the explanation and provides some useful examples.  A 

chapter in (Spong, 2006) quite literally contains a tutorial on assigning coordinate frames.  Using 
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D-H parameters one can compactly represent transformations imparted by individual links, then 

quickly do the matrix multiplication required to completely solve serial-link kinematics.   

Each A matrix represents the transformation imparted by a link of an n-link manipulator 

(special care is taken when assigning frame 0 and frame n or the first and last frames, 

respectively).  A matrices are the direct result of multiplying four 4x4 matrices where each 4x4 

matrix represents the homogeneous transformation of one parameter.  To clarify, assume the 

desired operations are: Rz,θ Tz,d Tx,a Rx,α; where θi, di, ai and αi are unique for each link.  

Multiplying in the given order yields Eqn 23.  Post-multiplying operates on the subsequent 

“current frames.” 

 RS � RotF,TU . TransF,WU . Trans@,XU . Rot@,YU 
 

� Bcos �ZS# �sin �ZS# 0 0sin �ZS# cos �ZS# 0 00 0 1 00 0 0 1C B
1 0 0 00 1 0 00 0 1 [S0 0 0 1 C B

1 0 0 AS0 1 0 00 0 1 00 0 0 1 C B
1 0 0 00 cos �IS# �sin �IS# 00 sin �IS# cos �IS# 00 0 0 1C 

 

RS � Cos]ZS^ �Cos]IS^Sin]ZS^ Sin]IS^Sin]ZS^ Cos]ZS^ASSin]ZS^ Cos]IS^Cos]ZS^ �Cos]ZS^Sin]IS^ Sin]ZS^AS0 Sin]IS^ Cos]IS^ [S0 0 0 1  

 

Eqn 23 

 

 

 Generally, the symbols used in Eqn 23 are defined as follows: ai ≡ link length, αi ≡ link 

twist, di ≡ link offset, θi ≡ joint angle.  Craig (Craig, 1986) gives the definitions in an easy to read 

bulleted list: 

• ai = distance from Zi to Zi+1 measured along Xi 

• αi = angle between Zi and Zi+1 measured about Xi 

• di = distance from Xi-1 to Xi measured along Zi 

• θi = angle between Xi-1 and Xi measured about Zi 

Where three of the four parameters (a, α and either d or θ) are fixed for any given link (d 

varies in a prismatic link and θ in a revolute link).  Throughout the various literature parameter 

definitions will vary depending on how frames have been attached to links.  In the original paper, 
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symbols a, α, s and θ are used and most recently symbols r, α, d and θ are popular (Denavit-

hartenberg parameters.2009). 

 Now that the basic math has been introduced, attention turns to assigning parameters to 

the Teachmover.  Frames are assigned according to Figure A-1; the global frame is fixed to the 

floor; sequentially there are:  Base (hidden), Shoulder, Elbow, Pitch, Roll and grip.  Table A-1, 

summarizes: a, α, d and θ parameters; they are similar to that of a PUMA 560.  Links 1 → 5 

correspond to Base, Shoulder, Elbow, Pitch and Roll in that order, which, for clarity, is the Teach 

Control order.  In Table A-1, all d(s) are fixed because all Teachmover joints are revolute. 

 

 

Figure A-1  Link Coordinate Frames; all are right-hand; x = red, y = yellow & z = blue.   
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_ a` α` d` θ`Link 1�bALc# 0 d2 e Z�Link 2�MeKfg[ch# i 0 0 Z�Link 3�kgEKl# i 0 0 Z�Link 4�nNoGe# 0 d2 0 d2 ! Z""Link 5�HKgg# 0 0 LL Z 
 

Table A-1  Summary of Microbot Teachmover D-H parameters. 

 

 Placing each row of Table A-1 into an A matrix yields: 

 

R� � BCos]Z�^ 0 Sin]Z�^ 0Sin]Z�^ 0 �Cos]Z�^ 00 1 0 e0 0 0 1C
R� � BCos]Z�^ �Sin]Z�^ 0 iCos]Z�^Sin]Z�^ Cos]Z�^ 0 iSin]Z�^0 0 1 00 0 0 1 C
R� � BCos]Z�^ �Sin]Z�^ 0 iCos]Z�^Sin]Z�^ Cos]Z�^ 0 iSin]Z�^0 0 1 00 0 0 1 C

R" � B�Sin]Z""^ 0 Cos]Z""^ 0Cos]Z""^ 0 Sin]Z""^ 00 1 0 00 0 0 1C
R � BCos]Z ^ �Sin]Z ^ 0 0Sin]Z ^ Cos]Z ^ 0 00 0 1 LL0 0 0 1 C

 

 

 

 

 

 

 

 

 

 

Eqn 24 

 

 

Building T, where T ≡ transformation from base to point of interest (often considered end 

effecter tip), simply involves matrix multiplication, see Eqn 25. 

 

? � R�R�…Rq0� � h�,� h�,�h�,� h�,� h�,� h�,"h�,� h�,"h�,� h�,�h",� h",� h�,� h�,"h",� h","   
 

Eqn 25 
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Where r#,# are given in Eqn 26. 

 h�,� � Sin]Z�^Sin]Z ^ � Cos]Z�^Cos]Z ^Sin]Z� ! Z� ! Z""^ h�,� � Cos]Z ^Sin]Z�^ ! Cos]Z�^Sin]Z ^Sin]Z� ! Z� ! Z""^ h�,� � Cos]Z�^Cos]Z� ! Z� ! Z""^ h�," � Cos]Z�^�iCos]Z�^ ! iCos]Z� ! Z�^ ! LLCos]Z� ! Z� ! Z""^# h�,� � �Cos]Z�^Sin]Z ^ � Cos]Z ^Sin]Z�^Sin]Z� ! Z� ! Z""^ h�,� � �Cos]Z�^Cos]Z ^ ! Sin]Z�^Sin]Z ^Sin]Z� ! Z� ! Z""^ h�,� � Cos]Z� ! Z� ! Z""^Sin]Z�^ h�," � �iCos]Z�^ ! iCos]Z� ! Z�^ ! LLCos]Z� ! Z� ! Z""^#Sin]Z�^ h�,� � Cos]Z ^Cos]Z� ! Z� ! Z""^ h�,� � �Cos]Z� ! Z� ! Z""^Sin]Z ^ h�,� � Sin]Z� ! Z� ! Z""^ h�," � e ! iSin]Z�^ ! iSin]Z� ! Z�^ ! LLSin]Z� ! Z� ! Z""^ h",� � 0 h",� � 0 h",� � 0 h"," � 1 

 

 

 

 

 

 

 

 

Eqn 26 

 

 

The DH parameters above represent an idealized Teachmovers with independent joints.  

Production Teachmovers are equipped with several coupled joints because it offers favorable 

characteristics for Teach Control operation and because “Designing cabling to prevent [coupling] 

from happening mechanically would have added undesirable complexity” (Microbot, 1984).  

Coupling joints also graduates kinematic analysis beyond serially linked lower-pair mechanism 

design to something resembling a parallel manipulator. 

Mathematica is used for numeric and symbolic trigonometric simplification; code for this 

part is greatly enhanced since interviewing Dr. Herbert Halpern.  His suggestions include the 

following commands: 
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in � rsA�, I�, [�, Z�t, sA�, I�, [�, Z�t, sA�, I�, [�, Z�t, sA", I", [", Z"t, sA , I , [ , Z t, sAu, Iu, [u, Zutv tableMakerxx__z{ Module |saa, sst, aa � Dimensions]�^; ss
� Table]SequenceForm]Link, �^, s�, 1, First]aa^t^; TableFormx�, TableHeadings
� rss, sa`, α`, d`, θ`tvz� 
tableMaker]in^ R]sa, α, d, θt^ { rsCos]Z^,�Sin]Z^ , Cos]I^, Sin]Z^ , Sin]I^, A , Cos]Z^t, sSin]Z^, Cos]Z^, Cos]I^,�Cos]Z^ , Sin]I^, A , Sin]Z^t, s0, Sin]I^, Cos]I^, [t, s0,0,0,1tv 
? � Dot@@�R/@in# ? � Simplify]?, Trig � True^ mat]1^ � Array]Subscript]h, #1, #2^&, s4,4t^ List@@LogicalExpand]mat]1^(*template*) �� ?(*calculation*)^//?AEgc�Kh�  
(*use//TableForm todisplayinMathematica, omitwhencopyingtoWord*) 

 

To fully appreciate why D-H parameterization is valuable consider the following.  

Whereas 6DOF can be described by four parameters this alone is not enough.  A 6DOF 

manipulator having all parameters populated by non-zero terms produces a very long total 

transformation matrix T, T = A1A2...An-1.  Mathematica produces a warning while trying to 

compute the matrix multiplication: 

 

Figure A-2  Mathematica supressing the output T for a fully populated 6DOF manipultor. 

 

T’s first term is shown next; the whole 4x4 matrix requires ~70 pages to display in 

textual form! 

 

A very large output was generated. Here is a sample of it:

8�1�<

Show Less Show More Show Full Output Set Size Limit...
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T�1,1# �  cos �Z #�cos �Z"#�cos �Z�#�cos �Z�#cos �Z�# � cos �I�#sin �Z�#sin �Z�##! ��cos �I�#cos �I�#cos �Z�#sin �Z�# ! sin �I�#sin �I�#sin �Z�#� cos �I�#cos �Z�#sin �Z�##sin �Z�##! �cos �I�#cos �Z�#��cos �I�#cos �I�#cos �Z�#sin �Z�#! sin �I�#sin �I�#sin �Z�# � cos �I�#cos �Z�#sin �Z�##! sin �I�#�cos �I�#sin �I�#sin �Z�# ! cos �I�#cos �Z�#sin �I�#sin �Z�#! cos �Z�#sin �I�#sin �Z�## � cos �I�#�cos �Z�#cos �Z�#� cos �I�#sin �Z�#sin �Z�##sin �Z�##sin �Z"##! �cos �I"#cos �Z"#�cos �I�#cos �Z�#��cos �I�#cos �I�#cos �Z�#sin �Z�#! sin �I�#sin �I�#sin �Z�# � cos �I�#cos �Z�#sin �Z�##! sin �I�#�cos �I�#sin �I�#sin �Z�# ! cos �I�#cos �Z�#sin �I�#sin �Z�#! cos �Z�#sin �I�#sin �Z�## � cos �I�#�cos �Z�#cos �Z�#� cos �I�#sin �Z�#sin �Z�##sin �Z�##! sin �I"#��cos �Z�#sin �I�#��cos �I�#cos �I�#cos �Z�#sin �Z�#! sin �I�#sin �I�#sin �Z�# � cos �I�#cos �Z�#sin �Z�##! cos �I�#�cos �I�#sin �I�#sin �Z�# ! cos �I�#cos �Z�#sin �I�#sin �Z�#! cos �Z�#sin �I�#sin �Z�## ! sin �I�#�cos �Z�#cos �Z�#� cos �I�#sin �Z�#sin �Z�##sin �Z�## � cos �I"#�cos �Z�#�cos �Z�#cos �Z�#� cos �I�#sin �Z�#sin �Z�## ! ��cos �I�#cos �I�#cos �Z�#sin �Z�#! sin �I�#sin �I�#sin �Z�#� cos �I�#cos �Z�#sin �Z�##sin �Z�##sin �Z"##sin �Z # 
 

Trying to simplify T yields another error: 

Simplify::time: Time spent on a transformation exceeded 300 seconds, and the transformation 

was aborted.  Increasing the value of TimeConstraint option may improve the result of 

simplification. >> 

Figure A-3  Mathematica warning produced while trying to simplilfy a “full T.” 

 

It is rather ingenious that attaching frames to links following DH1 and DH2 listed above 

often results in one or more parameter(s) equating to zero, which greatly simplifies the math. 
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Inverse Kinematics derived using Artificial Neural Network Fuzzy Inference 

In the previous section, forward kinematics are derived using a standard convention 

known as Denavit-Hartenberg parameterization.  Solving inverse kinematics of very large 

systems can be intractable.  Using a more modern method that discovers kinematic relations in 

lieu of geometry and trigonometry is useful and is the topic of this section. 

While it is possible to solve Eqn 26 iteratively, those 16 equations are nonlinear and 

almost one-way; that is, it is infinitely easier to check a candidate solution for satisfiability than 

to produce a satisfying solution.  For simple systems, traditional closed formed solutions can be 

found geometrically that are solvable in a few clock cycles on any mediocre computer.  

Upgrading to a modest computer opens the door to computationally discovering inverse 

kinematics. 

“There are several methods for solving [inverse kinematics] [computationally], coming 

originally from robotic applications” writes Samual Buss in his survey (Buss, 2004).  “These 

include cyclic coordinate descent methods (L. C. T. Wang & Chen, 1991), pseudoinverse 

methods (Whitney, 1969), Jacobian transpose methods [(Balestrino, De Maria, & Sciavicco, 

1984),(Wolovich & Elliot, 1984)], the Levenberg Marquardt damped least squares methods 

[(Wampler, 1986), (Nakamura & Hanafusa, 1986)], quasi-Newton and conjugate gradient 

methods [(L. C. T. Wang & Chen, 1991),(Zhao & Badler, 1994),(Deo & Walker, 1993)], and 

neural net and artificial intelligence methods [(Grzeszczuk & Terzopoulos, 1995),(Lendaris, 

Mathia, & Sacks, 1999), (Oyama, Chong, Agah, Maeda, & Tachi, 2001), (Ramdane-Cherif, 

Daachi, Benallegue, & Levy, 2002), (Grzeszczuk, Terzopoulos, & Hinton, 1998), (Jordan & 

Rumelhart, 1992), (Tevatia & Schaal, 2000), (D'Souza, Vijayakumar, & Schaal, 2001)].”  An 

artificial neural network fuzzy inference system is used here. 

Neural Networks are: a computer architecture in which a number of processors are 

interconnected in a manner suggestive of the connections between neurons in a human brain and 

which is able to learn by a process of trial and error (Mish, 1995).  In this thesis, a neural net is 

treated as a black box.   

The procedure to use the Neural Network black box is as follows: start with feeding in 

reference/training data; let the box train itself; then query.  Ideally interpolated responses will 

accurately represent the training data.  The concentration of this section will be on generating 

training data, training/testing of artificial neural net parameters and optimizing. 
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Teachmover arms have 5DOF, plus a gripper, so they can draw on many arbitrary 

surfaces.  Since it is easier to draw on planes and it costs nothing to markup recycled paper, the 

canvas will be always be recycled paper taped to a table.  This table will be the XY plane. 

The 1
st
 step in using a neural net is to acquire/generate reference/training data.  Here the 

domain is limited to a rectangle.  Limiting the scope to a 2D rectangle is a necessary condition 

because MATLAB’s anfis function is zero or first order only (The Mathworks, 2010).  

Training data is generated using a function written for this thesis named cart_cmd, which 

outputs motor encoder values given a desired position.  cart_cmd is called many times, with 

different parameters, and each input/output combination is saved in a training matrix.  The 

philosophy is: forward kinematics are much easier to solve than inverse kinematics, so generate a 

mesh of training points using forward kinematics, and use the artificial neural network fuzzy 

inference system to solve the inverse kinematics.  The syntax of cart_cmd is shown next. 

 

% Command needed to go from home to pos 

% [J1,J2,J3,J4,J5,J6] = cart_cmd([pos]); 

% pos = [x,y,z,p,r,g]; 

% J = [base,shoulder,elbow,R wrist, L wrist,grip] 

 

 A sample of the training matrix is shown in Table A-2.  It is a mesh of points on the XY-

plane inside a 2”x2” rectangle centered about point (0,7) on the calibration sheet.  On the left is 

the commanded position and pose and to the right are the motor encoder values.  All together the 

training matrix is 81x12. 

 

x (inch) y (inch) z (inch) pitch (deg) roll (deg) grip base shoulder elbow R wrist L wrist grip 

5 1.5 0 -90 0 0 327 -477 1149 455 312 1149 

5 2 0 -90 0 0 428 -482 1132 477 291 1132 

5.5 -2 0 -90 0 0 -393 -491 1086 298 469 1086 

Table A-2  A sample of the training matrix. 

 

The 2
nd

 step, to train the artificial neural network fuzzy inference system, requires only 

one MATLAB command, anfis.  Given as: 
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[fis,error,stepsize,chkFis,chkErr] = ... 

anfis(trnData,numMFs,trnOpt,dispOpt,chkData,optMethod) 

 

The command has many options.  Here: fis, error plus trnData, numMFs, trnOpt 

and dispOpt are used for training the picture drawing robot.  Each of the options is well 

documented in the help index.  Syntax for one call, using this truncated set of options, is: 

 

[anfisC,error(:,mf,C)] = anfis([cmd(:,1) cmd(:,2) data(:,C)], mf, epochmax); 

 

Where, according to the help index (The Mathworks, 1998): 

 

• anfisC is the FIS structure whose parameters are set according to a minimum training 

error criterion. 

• error(:,mf,C) is an array of root mean squared errors representing the training data 

error signal and the checking data error signal, respectively. The function only returns 

chkErr when you supply chkData as an input argument. 

• ([cmd(:,1) cmd(:,2) data(:,C)] is the training data set. This matrix contains data input in 

all but the last column. The last column contains a single vector of output data. 

• mf is the number of membership functions. Use numMFs, an integer scalar value, as the 

second argument to anfis when you do not already have a FIS to train, and you want anfis 

to build a default initial FIS using your data. Each input and output to this FIS is 

characterized by one or more membership functions. Specify the number of membership 

functions in numMFs. 

• epochmax is trnOpt(1) training epoch number 

• dispOpt(1:4) are all true. 

 

The number of membership functions (MFs) and training epoch number are analogous to the 

number of people tasked with a mission and the amount of time they have to complete it, 

respectively.  A big team and more time are helpful however these two parameters compete for 

computational resources.  Another concern is how to test when MF have saturated their learning 

potential.  Plots demonstrating these ideas are presented in the next few pages. 
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 Training the base motor exemplifies the typical four step procedure.  Step 1, run anfis.  

Running anfis and looking at anfisBASE reported error, Figure A-4, there is no apparent end to 

its “goodness,” more members and time appear to decrease error indefinitely.  While this may be 

true, the intention is to decrease encoder count and therefore positional error.   

In step 2, a new test compares anfis to the analytic solution.  anfisBASE is queried to 

predict points that interpolate the training data, the interpolated data set differs from the training 

data in that it is three times denser.  The test is repeated several times, each time the number of 

membership functions is increased by one, while the number of epochs is kept constantly high.  

Test results are giving graphically in Figure A-5 to Figure A-10. 

 

Figure A-4  anfisBASE error as reported by anfis. 
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Figure A-5  (above) Motor step error at membership funcs = 2 and epochs = 150. 

 
Figure A-6  (above) Motor step error at membership funcs = 3 and epochs = 150. 
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Figure A-7  (above) Motor step error at membership funcs = 4 and epochs = 150. 

 
Figure A-8  (above) Motor step error at membership funcs = 5 and epochs = 150. 
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Figure A-9  (above) Motor step error at membership funcs = 6 and epochs = 150. 

 
Figure A-10  (above) Motor step error at membership funcs = 7 and epochs = 150. 
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 Scale alone demonstrates two or three membership functions are best.  Comparing 

standard deviation proves two membership functions is best for the plotted/observed graphs.   

In step 3, computation time also demonstrates training two membership functions is 

faster than training three.  Each new member appears to increase training time exponentially, 

Figure A-11. 

 

 

Figure A-11  Time vs # of membership functions. 

 

Optimizing is the 4
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 and final step.  Thus far an arbitrarily large number of epochs have 

been used for training.  Previously, this was set to 150 epochs.  More detailed inspection of 
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Figure A-12  Error vs # of epochs given 2 membership functions. 

 

 Most anfis ‘reported error’ surface plots monotonically decrease as membership 

function and epochs increase as shown in Figure A-4.  Exceptions to this ‘rule’ occur twice.  

Both elbow and wrist plots contain a local maximum whereas none should occur, Figure A-13 

and Figure A-14.  A possible explanation for this behavior could be the fact that Teachmovers 

are 5DOF systems and anfis cannot handle such a highly non-linear systems. 
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Figure A-13  anfisELBOW error reported by anfis.  Notice the bump. 

 

Figure A-14  anfisWRIST error reported by anfis.  Notice the bump. 
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 Steps one through four are repeated for each joint motor.  The optimal number of 

membership functions and epochs for each joint motor are tabulated in Table A-3. 

 

Motor Membership function count Epochs 

base 2 100 

shoulder 2 100 

elbow 2 125 

pitch 2 100 

roll 3 150 

grip 2 250 

Table A-3  Optimal ANFIS parameters. 

 

Summary 
This concludes Appendix A on Generalized Kinematics.  The math covered in this 

section is important for several reasons.  First, it frames the kinematics and inverse kinematics 

within a standardized notation.  Taking the equations derived in Chapter 4 and reformulating 

them in this way enables the work to be quickly compared and implemented.  Second, using the 

compact Denavit-Hartenberg parameterization technique reduces the computation time by using 

matrix operations.  Third, the ANFIS method shown here can be used to solve other, larger 

systems where analytic solutions are intractable.  Some code for this modern ANFIS approach to 

kinematics can be found at (The MathWorks, 2010). 
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