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Abstract—In this research, a stable biped walking pattern is 
generated. The walking pattern is a simple third order 
polynomial. To find the proper boundary condition, the 
reinforcement learning algorithm is used. The final velocity of 
the walking pattern is chosen as learning parameter. To test the 
algorithm, a simulator that includes the reaction between the foot 
of the robot and the ground was developed. The algorithm is 
verified through a simulation. 

 
Index Terms—Biped Walking, CMAC, Reinforcement 

Learning and Walking Pattern 
 

I. INTRODUCTION 

ENERALLY, many control methods need a system model,  

based on these models, controllers are designed to perform 

desired motions. However, if the system is difficult to model, 
these control methods are useless. In these cases, control 

methods through reinforcement learning can serve as an 

alternative method. Reinforcement learning is a learning 
algorithm that mimics the human learning procedure from 

experience 9.   
 Recently many research groups have reported results 

concerning a biped walking robot 1, 2, 3, 4, 10. These robots can 

walk stably over level ground and inclined ground, go upstairs 
and even run. These robots use commonly one of two methods 

for stable walking. 

 
Fig. 1-1 Inverted pendulum model control method  
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The first involves a simple inverted pendulum model. Based on 

this simple model, a feedback controller is designed and 
follows a ZMP reference.  

 The second method involves the use of an accuracy model of 

robot and environment. A stable walking pattern is generated 
before walking based on the accuracy model.  

 

 
Fig. 1-2 Accuracy model  method  

 
Problems can arise with the use of the second method. If the 

environment changes, the generated walking pattern is likely to 
be useless. The walking pattern should be regenerated based on 

the changed model. An additional issue involves the difficulty 
with modeling an accurate model of the robot with the 

environment including such factors as the influence of the 
posture of the robot and the reaction force from the ground. 

Consequently, the generated walking pattern should be tuned 

by experiments. 
 This research begins to solve these problems using 

reinforcement learning. Numerous research results concerning 
biped walking using reinforcement learning have been 

announced, and a number of research group have had good 

results 5, 6, 7, 8, 23, 24. Morimoto et al. determined a parameter 
value, the knee angle of the front leg, for stable and repeated 

walking in the sagittal plane using a simple actor-and-critic 
method.  The robot involved with their study has a U-shaped 

foot. Chew et al. also used a parameter value, the foot 

placement for the front leg, to walk with a constant velocity 
using what is known as Q-learning. And a simple ankle torque 

controller is added for stable walking. In addition, Katic et al. 
and Benbrahim et al. use reinforcement leaning as a 

sub-control routine to determine the overall biped walking 
control gain and parameters.  

 Earlier research on the subject of biped walking using 

reinforcement learning mainly considers stable walking. 
However, the posture of the robot is as important as stable 

walking, for example, if considering climbing stairs or walking 
across over stepping stones. In these cases, the foot placement 
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of the robot is very important. Each foot should be placed in the 

required position or the robot will collapse. 

 Thus, the main goal of this research is to determine a 
walking pattern that satisfies both stable walking and the 

required posture_(foot placement) using reinforcement 
learning. The Q-leaning algorithm is used as the learning 

method and CMAC(Cerebellar Model Articulation Controller) 
is used as the generalization method. 

 The remainder of this paper is organized as follows: Chapter 

2 presents the walking pattern generation for stable walking. In 
Chapter 3, the reinforcement learning agent and simulator for 

training the reinforcement learning agent are represented. In 
Chapter 4, simulation results are presented. Conclusions and 

future works are presented in Chapter 5. 

 

II. WALKING PATTERN 

 In this research, third order polynomial ankle and hip joint 

pattern for a support leg is designed. This pattern is from the 
moment one foot touches the ground to the moment the other 

foot touches the ground. It is shown in the Fig. 2-1. To make 
the body upright from the ground, the sum of the hip, knee, and 

ankle angles is zero. As the knee angle of the support leg is 

constant while walking, the hip angle is not independent from 
the pattern of the ankle for an upright. Thus, only the ankle 

joint pattern is required. 
 

 
Fig. 2-1 Sequence of walking 

 
 To create third order walking pattern, four boundary 
conditions are needed. These boundary conditions were chosen 

with a number of factors taken into account. To avoid jerking 

motions, the pattern must be continuous. For this reason, the 
angle and angular velocity of the ankle joint at the moment of 

beginning of the pattern of support leg were chosen as the 
boundary conditions. Additionally, when the foot must be 

placed in a specific location, such as upstairs or on stepping 

stones, the final position of the walking pattern is important. 
This final position is related to the step length, and this value is 

defined by the user. Finally, the final velocity of the walking 
pattern is utilized. Using this final velocity, it is possible to 

modify the walking pattern shape without changing the final 

position 12.  
 However, it is difficult to choose the correct final velocity of 

the pattern. In addition, it requires numerous trials to tune the 

final velocity. Thus, in order to find a proper value of this 

parameter, the reinforcement leaning algorithm is used. 
 From these four boundary conditions, third order polynomial 
walking pattern can be generated. Fig. 2-2 shows this process. 

 

  
Fig. 2-2 Walking pattern generator 

 

III. REINFORCEMENT LEARNING 

 Because reinforcement learning is essentially based on 

trial-and-error, it is dangerous to apply in actual systems before 
sufficient training is performed. Therefore, a learning agent 

should be fully trained in a biped walking robot simulator and 
then applied to an actual robot. In addition, the biped walking 

robot simulator can be used to test the walking algorithm, and 
the walking pattern 4, 15, 16, 17, 18. 

 The simulator is used to train a reinforcement learning agent, 

hence, its model is very important. The model used for the 
simulator should take into account the robot dynamics and the 

interaction between the robot and its environment model. To 
build this model, the ODE(Open Dynamics Engine) 22  

developed by Russel Smith is used. The ODE provides the 

dynamics and a collision analysis library. Many researchers use 
it as a physics library 19, 20, 21. The ODE library is an open 

source program. 
 The reinforcement learning agent uses the Q-learning 

algorithm which in turn uses the Q-value. To store the various 

Q-value which represents actual experience or trained data, 
generalization methods are needed. Here, the 

CMAC(Cerebellar Model Articulation Controller) is used as a 
generalization method, as this algorithm is converged quickly 

and us easy to apply to a real system. 
 

 
Fig. 3-1 The overall structure 

 

 Biped walking system and pattern generation processes 
involve a discrete system. Before the moment the biped 

walking pattern is started, the reinforcement learning agent 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3

measures the current states of the robot and calculates the 

action for the biped walking pattern. The robot walks based on 

this walking pattern, and this pattern does not change while the 
robot is walking. This procedure is repeated with every walking 

step. Fig. 3-1 shows this procedure. During the walking process, 
the robot can collapse or walk stably, this information is stored 

as the Q-value. 
 To choose the proper states, the linear inverted pendulum 

model normally used to model a biped walking robot is used. If 

the third order polynomial is used as the walking pattern as 
mentioned previously, the ZMP equation can be written as 

shown in Fig. 3-2.  
 As shown in Fig. 3-2, the body position and body 

acceleration are related to the ZMP position. If the ZMP 

position is located in support region of the robot, the robot is 
than dynamically stable. Therefore, choosing body position and 

body acceleration as states is acceptable. In terms of energy 
efficiency, conserving the angular and linear momentum is 

important. The body velocity shows the direction of the 

movement of the body. Therefore, the body velocity can be 
another state. Table 3-1 shows the selected states and related 

reasons behind each state. 
 

 
 Fig. 3-2 The ZMP position of the inverted pendulum 

 
 All states are normalized to -1.0~1.0. However, the 

reinforcement learning agent has no data regarding the 
maximum values of the states; the reinforcement learning 

agent receives this data during the training. 
  

Table 3-1 States 

State Reason 

Body position respect to the 
support foot 

Relationship between the C.G. 
position and the ZMP and the 

body posture 

Body velocity Angular and linear momentum 

Body velocity 
Relationship between the C.G. 

position and the ZMP 

 
First these maximum values are set to be small, in this case 0.1, 

the reinforcement learning agent then updates the maximum 

value at every step if the current values are larger than the 

maximum values. 

 To create third order polynomial walking pattern, the final 
velocity is needed, as discussed in the Chapter 2. Hence, the 

final velocity is used as an action and other conditions are 
determined by the user. Table 3-2 shows the action and its 

reason. The maximum value of the action is limited to 0.3m/s. 
This maximum value is based on the physical motor 

specification. 

 
Table 3-2 Action 

Action Reason 

Final velocity of the walking 
pattern 

Only the final velocity is the 
unknown parameter. It is related 

to stable walking 13. 

 
 The reward function should be the correct criterion of the 
current action and also represents the goal of the reinforcement 

learning agent. The reinforcement learning agent should learn 

to determine a viable parameter value for the walking pattern 
generation; its goal is to have the robot to walk stably. The 

reward is thus divided as ‘fall down or not’ and ‘looking good 
or not’ in this paper. Many candidates exist for this purpose, 

and the body rotation angle was finally chosen based on trial 
and error. Table 3-3 shows the reward and reasons. If the robot 

is falling down, the reinforcement learning agent then gives 

high negative value as the reward; in the other cases, the robot 
receives positive values according to body rotation angle. The 

body rotation angle represents the feasibility of the posture of 
the robot. 

 
Fig. 3-3 Body rotation angle 

 
Table 3-3 Reward function 

Reward Reason 

Fall down or remain upright 
This denotes the stability of the 

robot(or absence of stability) 

Body rotation angle respect to 
support foot 

It represents how good it is for 
stable dynamic walking 

 

θ
r 
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IV. SIMULATION 

To test the reinforcement learning agent, a target motion is 
used. As shown in Table 4-1, the step length is 0.358m and the 

step period is 0.9 sec. The average speed in this case is 
1.432km/h. The HUBO biped walking robot developed by 

KAIST 4 was used in this simulation. The specifications of this 

robot are shown in the appendix. 
 

Table 4-1 Simulation conditions 

Step period Step length 

0.9 sec 

0.179 + 0.179 = 0.358m 

Target motion of the 
front leg 

Hip: -0.4 rad 

Knee: 0.2 rad 

Ankle: 0.2 rad 

Target motion of the 
rear leg 

Hip: 0.2 rad 

Knee: 0.2 rad 

Ankle: -0.4 rad 

 
 The reinforcement learning agent uses ε-greedy method to 

explore the learning space. ε-greedy value is initially set to 0.5 
and during the training, and this value is decreased to zero 

gradually. From Fig. 4-1, the reinforcement learning agent 

converges after the 19th trial. After the 19th trial the robot walks 
over 400 steps and 120m. In the 10th trial, the robot succeeds in 

walking 38 steps but this is the local minimum.  
 

  
Fig. 4-1 Iteration and number of success 

   

 Fig. 4-2 and Fig. 4-3 show the body movements of the robot 

after the 19th trial. From these figures, the robot walks stably 
and the walking sequence is repeated. 

 The body moves up and down as knee angle of the support 
leg is fixed during walking. This motion is similar to passive 

walking.  
 Fig. 4-4 shows the body rotation angle. The maximum value 

of the body rotation angle is 1.28 degrees, and this occurred 

when the support leg changed as the dynamic model changed 

in this case. 

 

 
Fig. 4-2 Body movement (x-direction) 

 

 
Fig. 4-3 Body movement (y-direction) 

 
 

 
Fig. 4-4 Body rotation angle  
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Fig. 4-5 Foot position (x-direction) 

 

 
Fig. 4-6 Foot position (y-direction) 

 

 Fig. 4-5 and Fig. 4-6 show position of the foot during the 
stable walking process. From Fig. 4-5, it is shown that the robot 

follows the given condition mentioned in Table 4-1. Its step 
length is 0.382m and the step period is 0.9 sec. This implies 

that the robot can walk stably and will place its foot in the 

desired position.  
 

V. CONCLUSION AND FUTURE WORKS 

In this research, the learning system for a biped walking 
robot is developed. Using a reinforcement learning agent, a 

stable walking pattern is generated which is able to place the 
foot of the robot in a specific position. This pattern was tested 

and verified using a simulator. Although the motion of the 

robot is limited to the sagittal plane at present, this system will 
be extended to 3-dimensional motion in the future. Also more 

complicated motions will be tested in the real system.  
 

APPENDIX 

 The model used in the simulation is from the real HUBO 
model. The physical parameters are calculated using 3D CAD 

software. 

 
Fig. A-1 HUBO model 

 
Table A-1 Inertia of momentum 

Body number x-x y-y z-z 

1 
0.76285 

kgm2 
0.16358 

kgm2 
0.74398 

kgm2 

2 0.066 kgm2 
0.01146 

kgm2 
0.06255 

kgm2 

3 
0.02164 

kgm2 
0.0045 kgm2 

0.01991 
kgm2 

4 
0.00593 

kgm2 
0.0046 kgm2 

0.00848 
kgm2 

5 0.066 kgm2 
0.01146 

kgm2 
0.06255 

kgm2 

6 
0.02164 

kgm2 
0.0045 kgm2 

0.01991 
kgm2 

7 
0.00593 

kgm2 
0.0046 kgm2 

0.00848 
kgm2 

 
Table A-2 Mass 

Body number mass 

1 32.56 kg 

2 4.55 kg 

3 1.80 kg 

4 2.14 kg 

5 4.55 kg 

6 1.80 kg 

7 2.14 kg 
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