
 

An Embedded Tracking System Using Sensor Fusion 

& RTOS 
 

G. Navel and J. Quillès 
School of CSE, University of Salford, Manchester M5 4WT, UK 

{g.navel, j.quilles}@net.estia.fr 
 

 

 

Abstract - This assignment consist in implementing a tracking 
algorithm to track humans with a one axis actuated panel holding 
two different kind of sensors. The final goal is to prove that using 

sensor fusion can improve the tracking. In order to prove that we 
focus on implementing three different algorithm, two simple 
tracking algorithm, one for each kind of sensor, and one using the 

fusion of both sensor. Then we compared the results of the three 
different algorithms two by two using T-Test in order to try to 
prove statistically that one algorithm is quantitatively better than 

others.  

Index Terms – Tracking System, Sensor fusion, Statistics. 

 

I. INTRODUCTION 

Nowadays robot are more and more integrated in our world. 

To make them cleverer and facilitate their integration, it can be 

useful to ease their interactions with humans. This assignment 

consist in implementing a tracking algorithm able to track 

humans. Indeed, have the ability to “look at human users” or 

“follow them” can be useful in a lot of different kind of 

interaction with human. Surveillance, telepresence and 

assistance are different fields where it could be use.  

The material given to us, consist in a one axis panel actuated 

by a servo motor. This panel was holding two infrared telemeter 

(sharp sensors) and a 4*4 pixel thermal camera. It was ask to us 

to implement a RTOS in an atmega128 with real task handling, 

a bidirectional serial communication between the 

microcontroller and a PC and a JAVA GUI (with intelliJ) on a 

PC to control the panel orientation.  

The basics knowledge requirements to complete this 

assignment were C and Java programming, AVR 

microcontroller register configuration, IntelliJ GUI 

development, Sensor fusion implementation, RTOS 

implementation, Statistics knowledge, Protocol communication 

implementation serial and I2C, Image treatment, and technical 

knowledge about components used. 

 

 

 

 

 

 

 

 

 

 

A. Literature Review 

 

Here is a summarized review of the papers and lectures used 

to complete this assignment: 

“Algorithmique et Programation” Lectures about how to 

program in C and think about algorithm implementation by 

Guillaume Riviere, ESTIA first year. It include all the basics of 

the C language and the good habit to take when programming. 

“Initiation aux Statistiques appliquées” Lectures about how to 

use statistic to prove results, by Virginie Rosa with the 

collaboration of Audrey Abi Akle, Nadine Couture, Katarina 

Borgiel and Marion Saumonneau, ESTIA, second year. 

“Programmation Orienté objet” Lectures about learning how 

to program in Java by Sebastien Bottecchia and Guillaume 

Riviere, ESTIA second year.  

“Capteurs et communication” Lectures about how to 

implement communication protocol via UART by Joseph Canou 

and Olivier Patrouix, ESTIA, second and third year. 

“Signal et Image” Lectures about how to treat pictures by 

Sebastien Bottecchia, ESTIA, third year. 

“Embedded system & RTOS” Lectures dealing with, C 

programming, AVR microcontroller, and RTOS 

implementation by Theodoros Theodoridis, University of 

Salford, embedded system master. 

“Mechatronics & embedded robotics” Lectures with some 

parts dealing with sensors fusion and statistics, by Theodoros 

Theodoridis, University of Salford, embedded system master. 

 

B.  Paper Outline 

 

The rest of the paper is organized as follows: Section II 

presents the methods employed with subsection A. describing 

the hardware architecture, subsection B. describing the software 

architecture and subsection C explaining algorithms employed. 

Then, experimental results and analysis of the performance of 

the system are demonstrated in subsection A. and B. of the 

Section III.  Finally, conclusions and future directions are given 

in Section IV followed by acknowledgments and references. 

 

 

 



II. METHODS 

A. Hardware architecture  

 

(a) Actuated panel and sensors 

The tracking panel used for this assignment was a one axis 

motorized panel actuated by a standard S3003 servo motor. 

The motorized axis is arbitrary chosen as the z axis. “teta” is 

chosen as the angle between axis x0 (fixed with the body of the 

servo motor) and x1 attached to the moving panel as shown 

below: 

 

 
Figure 1. Geometrical considerations. 

 

The angle teta can vary from 0 to 180° (Physically tested) and 

on the moving panel there are two IR Sharp range sensor and 

one thermal Omron camera disposed as shown below: 
 

 
 

Figure 2. Sensors disposition 

 

The IR Sharp GP2Y0A02YK range sensors are analog sensors 

specified to measure distance from 20cm to 150cm.   
 

 
 

Figure 3. Distance measured by IR sharp sensors (img ref [13] p4) 

 

 

The thermal Omron Camera is the model D6T -44L -06.  It’s a 

4*4 pixel camera sending the 16 thermal value 2 bytes long of 

each pixels plus the value of the ambient temperature via I2C.  

 

 
 
 

Figure 4. Thermal sensing by Omron camera (img ref [9] p2) 

 
 

(b) Control units 

To interface with the servo and the sensors we used a STK300 

Kanda development board. This board contain the Power 

Supply Unit (PSU) based on a LM2576, the USB Control Unit 

(UCU) based on a FT232RL, and the Microcontroller Control 

Unit (MCU) based on an ATMega128. The computing process 

is deported on a separate computer with a Java GUI interface. 

 

 
Figure 5. Flux, data and control 

 

- Sensors get data from the human tracked target. (orange) 

- STK300 read sensors data (blue) and send it to the 

computer via USB Serial communication (gold). It also 

receive the high level servo position command from the 

computer (red) and generate the according PWM to the 

servo motor (green). 

- The computer received sensors data (gold), compute it to 

elaborate a high level servo position command and send it 

to the STK300. (red) Then the computer store the data into 

an excel file. (grey) The computer also display received 

data (purple) to the optional supervisor.  

 



B. Software architecture 

 

(a) Microcontroller level 

The ATMega128 have been programed in C language with the 

Atmel Studio IDE. The YAVRTOS, a free and open source, 

real-time task handling operating system for AVR 

microcontroller, is implemented on the ATMega128, handling 

3 tasks which are, sensors acquisitions, serial communication 

to send acquisitions to the computer, and read and execute 

command sent by the computer. The task with the highest 

priority is the sensor acquisition and the task with the lowest 

priority is the reading and execute command from the 

computer. The code is organized in package with each package 

dedicated to kind of functions.  

- “adc” contain all the functions relative to analog to digital 

conversions, useful to get data from analog sensors.  

- “camtwi” contain all the functions relative to communicate 

with the thermal camera via I2C and get the pixels thermal 

value. 

- “lcd” contain all the functions relative to display things on 

a LCD screen, used for debugging mode. 

- “port” contain all the functions relative to access and set 

state port of the ATMega128. 

- “rtos” contain all the necessary to implement YAVRTOS. 

- “serial” contain all the advanced function we implemented 

to encode the serial communication. Data are encoded 

with start and stop bytes, specials characters consideration 

and checksum calculation. 

-  “servo” contain functions to control the servo motor. 

is implemented  

- “twi” contain all the basic functions relative to standard 

I2C communication  

- “uart” contain all the basic functions relative to standard 

serial communication 

- “main” contain tasks definition and launch the YARTOS 

and the tasks handling. 

 

(b) Java GUI level 

We implemented a classic MVC structure (Model, View, and 

Controller) to organize the Java code on the computer.  

 

The final implemented view look like this:  

 
 

Figure 6. Final GUI Java view implemented 
 

Due to the three different tracking algorithm we want to use, 

we choose to implement multiple model file, one for each 

algorithm, plus one to store value into the excel file. 

 

The resulting project organization: 

- “View” is the class displaying the window interface. 

- “Model” is the class writing data into the excel file 

- “CameraModel” “SensorModel” “FusionModel” are the 

models for each algorithm and motor position calculation. 

- “SerialPort” is the class who write and read data to and 

from the SerialPort. 

- “SerialTreatment” is the class used to interpret the 

advanced serial protocol we implemented 

- “Controller” is the class linking  view,  models and serials 

classes 

- “Run” creating the controller object to launch the app. 

 

C. Algorithms employed 

 

Algorithms employed are based on the sum of current position 

(belonging 0° to 180°) and an increment (or decrement) 

moving value calculated from the sensors (belonging -6° +6°). 

If the sum is below 0 then the commanded position is set to 0°, 

if it’s above 180 it is set to 180°, else it is set directly to the 

sum. 

 
0 ≤ 𝑁𝑒𝑤 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝐶𝑢𝑟𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑉𝑎𝑙𝑢𝑒 ≤ 180  (1)  

 

(a) Sharp only “Value” calculation  

With Sharp sensors only, the ‘Value’ to move (SV), in degrees, 

is calculated from the difference of the right and left distances 

measured by the two sensor, regarding the value MinRL= Min 

(right, left), in cm, to take in consideration if the tracked target 

is close to the panel. If the target is near the panel the effect we 

choose is to move more the panel than if the target is far. 

 

TABLE 1 

SV CALCULATION TABLE 

               MinRL (cm)  

Distance        

subtraction (cm) 

MinRL ≥ 40 

(Target far) 

MinRL < 40   

(Target near)   

        Right-Left >  60  3  4 

 60≥ Right-Left >  30  2  3 

 30≥ Right-Left >  10 

 10≥ Right-Left ≥ -10 

-10> Right-Left ≥ -30 

-30> Right-Left ≥ -60 

-60> Right-Left  

 1 

 0 

-1 

-2 

-3 

 2 

 0 

-2 

-3 

-4 

 

(b) Thermal camera “Value” calculation  

With the thermal Camera only, the ‘Value’ to move (CV), in 

degrees, is calculated from two parameters.  

First, WAV: the Weighted Average thermal Value of the pixels 

P[i][j], a 10 bit signed value.   

 

𝑊𝐴𝑉 =
∑ ( 𝑎[𝑗]∗(∑

(𝑃[𝑖][𝑗]−𝑃𝑚𝑖𝑛)

(𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛)+1𝑖∈[0;3] ))∗1023𝑗∈[0;3]   

∑   |𝑎[𝑗]|𝑗∈[0;3]
                    (2) 

 
Note: WAV can belong [-511; +511] in theory with very particular situation, 
but by experimentation it stays between [-100; 100]. 

 



Second parameter:  TAV: the Thermal Average Value of the 

pixels P[i][j]. 

 

    𝑇𝐴𝑉 =
∑ ( (∑

(𝑃[𝑖][𝑗]−𝑃𝑚𝑖𝑛)

(𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛)+1𝑖∈[0;3] ))∗1023𝑗∈[0;3]   

4
       (3) 

 

 

WAV indicate if we should move a lot or not and TAV 

indicates if tracked target is near or far. 

 

TABLE 2 

CV CALCULATION TABLE 

                       TAV 

AWV        

TAV ≥ 600 

(Target near) 

TAV < 600     

(Target far) 

        AWV >  90  3  4 

 90≥ AWV >  60  2  3 

 60≥ AWV >  30 

 30≥ AWV ≥ -30 

-30> AWV ≥ -60 

-60> AWV ≥ -90 

-90> AWV  

 1 

 0 

-1 

-2 

-3 

 2 

 0 

-2 

-3 

-4 
 

 

(c) Fusion Algorithm 

The fusion is the simple crossing of Camera to move Value CV 

and Sharp to move Value SV, plus a truth parameter for each. 

The Fusion ‘Value’ to move (FV), in degrees, is calculated 

with CV and SV:  FV = fusion (CV, SV) 

 

TABLE 3 

FV CALCULATION TABLE 

CV 

SV 

-4 -3 -2 -1  0  1  2  3  4  ? 

-4 -4 -4 -3 -3 -2 -2 -1 -1  0 -4 

-3 -4 -3 -3 -2 -2 -1 -1  0  1 -3 

-2 -3 -3 -2 -2 -1 -1  0  1  1 -2 

-1 -3 -2 -2 -1 -1  0  1  1  2 -1 

 0 -2 -2 -1 -1  0  1  1  2  2  0 

 1 -2 -1 -1  0  1  1  2  2  3  1 

 2 -1 -1  0  1  1  2  2  3  3  2 

 3 -1  0  1  1  2  2  3  3  4  3 

 4  0  1  1  2  2  3  3  4  4  4 

? -4 -3 -2 -1  0  1  2  3  4  0 
CV =? if no thermal object detected. (Max < Ambient) 

SV =? if no object detected or object too far (MinRL>120). 

 

III. RESULTS 

A. Experimentation 

 

To compare our algorithm we tested them by making them track 

a walking person wandering in a circle around the tracking panel, 

from 0° to 180° and then from 180° to 0°, at an approximatively 

constant walking speed and at an approximatively constant 

distance  R≈ 1m from the panel. 

 
Figure 13. Tests configuration  

 

For each algorithm we execute 20 times the tracking test and 

we qualitatively describe the tracking and calculate the average 

error e between teta_r, the successive real angular panel 

positions obtained by tracking, and teta_w the angular position 

wanted each time.  

    𝑒 = √
1

𝑛
∗ ∑ (𝑡𝑒𝑡𝑎_𝑟 − 𝑡𝑒𝑡𝑎_𝑤)²𝑘      (4) 

 

TABLE 1 

QUALITATIVE OBSERVATIONS TABLE 

Characteristics Sharp Camera Fusion 

Fluidity Not Soft Soft Soft 

Fast Faster Slower Medium 

Track all objects 

Track objects far 

Tracking 

Stability 

Error (average) 

Yes 

No 

Good 

Not stable 

6,05 

Only hot 

If hot 

Good 

Stable 

8,4 

Yes 

If hot 

Good 

Stable 

6,4 

 

 

TABLE 2 

QUALITATIVE OBSERVATIONS TABLE 

Type Sharp Camera Fusion 

Population 20 20 20 

Error (average) 6,05 8,4 6,4 

Variance 

Standard deviation 

Standard error 

Min 

Max 

Range 

Median 

Max of 95% 

Min of 95% 

Confidence interval 

3,1475 

1.82 

0.407 

4 

11 

7 

6 

6,83 

5,27 

1,56 

1,54 

1,27321 

0,2847 

5 

10 

5 

8,5 

8,94 

7,86 

1,08 

2,34 

1,56945 

0,35094 

4 

9 

5 

6 

7,07 

5,73 

1,34 

 

 

 



Distributed result population for each experiments.  

Figure 15. Distributed result population for each experiments 

 

B. Analysis 

 

It’s hard to qualitatively find which tracking algorithm is better 

than others but it seems that qualitatively the fusion tracking is 

very similar to the camera tracking … 

However we can consider that camera and sharp are normally 

distributed. More, even if fusion distribution is not looking like 

normally distributed we assume that fusion is also normally 

distributed to allow us to perform a T-Test, but we need to do 

more experiments to verify it.  

In order to reveal if our fusion tracking is significantly different 

from using just each sensor separately we choose to perform T-

Tests, between (Fusion, Camera) and ( Fusion, Sharp ) but first 

we verified that tracking using camera and sharp only are 

significantly different using a T-Test. 

 

- T-Test Sharp/camera results: t(38)=4.73, p=1.5E-05<0.05 

≠H0. 

This result allow to conclude that camera tracking and sharp 

tracking are significantly different.  

 

- T-Test Sharp/fusion results: t(38)=0.65, p=0.2593>0. 05 

=H0.  

This result can’t allow us to conclude that fusion tracking and 

sharp tracking are quantitatively different. 

  

- T-Test Camera fusion results: t(38)=4.426, p=3.9E-5<0.05 

≠H0. 

This result allow to conclude that camera tracking and fusion 

tracking are significantly different.  

 

IV. CONCLUSIONS 

To conclude about results obtained, first we can say that 

fusion algorithm and sharp algorithm are quantitatively 

significantly different from the camera algorithm and by this 

way significantly better than the camera algorithm, because they 

are different and both with a better mean. 

Second, even if the quantitative analysis seems to show that 

fusion tracking algorithm doesn’t bring significant quantitative 

amelioration in comparison with the Sharp algorithm, we can 

affirm that using the fusion is an amelioration because fusion 

have qualitative improvement. The system with fusion 

algorithm can now track far object if hot. It is stable and the 

movement is softer like the tracking with camera only.      

However to verify our conclusion we should experiment more 

times because 20 for each experiment is not a big population. 

More to improve results it could be interesting to try different 

values for simple sensors algorithms and try other kind of fusion 

models such like TLU and so…   

Then in order to try to determine optimal algorithms, more 

experiments should be done with tracked target at different 

distances from the panel and different “walking speed”.  

Moreover, if working on this project last in the time, it should 

be interesting to create a complete testing system with an 

actuated thermal moving target with parametric angular speed 

and distance “to target” easily modifiable. This could allow to 

realize experiments faster and more efficiently than by tracking 

a real person walking at an unknown walking speed and give 

better tests result.   

  

ACKNOWLEDGMENTS 

Thanks to ESTIA and University of Salford for the knowledge 

and materials given.  

Thanks to Dr. Theodoridis for, giving this very interesting 

project, and guide us during those five weeks even if it was not 

healthily easy for him. 

Thanks to my family who support and follow me in all my 

projects. 

 

REFERENCES 

[1] G.  Riviere, Algorithmique et Programmation, ESTIA, lectures 1st year. 
[2] V. Rosa, A. Abi Akle, N. Couture, K. Borgiel and M. Saumonneau 

Initiation Statistiques appliquées ESTIA, lectures 2nd year. 
[3] S. Bottecchia and G. Riviere Programmation Orienté objet, ESTIA, 

lectures 2nd year.  
[4] J.  Canou and O.  Patrouix, Capteurs et communication, ESTIA, lectures 

3rd year. 
[5] S.  Bottecchia, Signal et Image, ESTIA, lectures 3rd year. 
[6] T.  Theodoridis, Embedded system & RTOS, University of Salford, lectures 

from embedded system master. 
[7] T.  Theodoridis, Mechatronics & embedded robotics, University of 

Salford, lectures from embedded system master. 
[8] T. Theodoridis, IEEE Assignment Template, University of Salford, 

Standard template. 
[9] OMRON corporation, D6T MEMS Thermal Sensors, Datasheet. 
[10] OMRON corporation, [D6T-44L -06] Application Note No.MDMK-12-

0493, Datasheet. 
[11] Atmel corporation, ATMega128, Datasheet. 
[12] Kanda Systems, STK300 User Manual, User manual. 
[13] SHARP, GP2Y0A02YK Optoelectronic Device, Datasheet. 
 
 

EXTERNAL LINKS FOR ONLINE STATISTIC CALCULATIONS 

 http://www.usablestats.com/calcs/2samplet 

 http://www.socscistatistics.com/tests/studentttest/  

 http://studentsttest.com/ 

 
 
 
Article written by QUILLES Jonathan alias Mike118. 
 
 
 

https://www.usablestats.com/calcs/2samplet
https://www.socscistatistics.com/tests/studentttest/
https://studentsttest.com/

