Rechercher
Drivers variateurs et autre contrôleurs d'actionneurs
- Kits robots
- Kits débutants Arduino
- Cartes programmables
- Shield
- Capteurs
- Moteurs et actionneurs
- Drivers variateurs et autre contrôleurs d'actionneurs
- Composants et accessoires robotique
- Alimentation
- Eléments mécaniques
- Domotique
- Impression 3D
- Outillage
- Produits 100% remboursés *
- Produits reconditionnés
- Chèque Cadeau
- Livres robotique
- Produits dérivés
- Coupe de France de Robotique
- Services
- Fin de série
Driver L9110 pour moteur CC
Carte Driver permettant de piloter jusqu'à 2 moteurs à courant continu.
En savoir plus
Description :
Le driver de moteur L9110S est une carte compacte qui peut être utilisée pour piloter deux moteurs courant continu, de manière indépendante, en contrôlant leur vitesse et leur direction. Cette carte permet donc de piloter de petits robots équipés de deux moteurs pour la propulsion tel que le robots 2WD.
Les deux puces qui équipent ce module de commande peuvent conduire jusqu'à 800mA en courant continu. Les cartes peuvent être commandées à partir de 2.5V permettant à ce module d'être utilisé avec une tension utilisée par les microcontrôleurs, 3.3V et 5V.
Quatre trous rendent cette carte facile à monter sur un robot ou tout autre projet.
Bien que pas prévu de base pour cela, ce module peut également être utilisé pour conduire un seul moteur pas à pas.
Les moteurs se connecte au driver par l'intermédiaire des deux borniers à vis.
La carte est équipé d'un connecteur avec 6 pins d'espacement 2.54mm.
On y retrouve :
2 pins pour l'alimentation au centre et deux fois deux pins notés A et B, de part et d'autre de l'alimentation pour piloter chacun des deux moteurs.
Caractéristiques techniques :
- 2 puces L9110 pour le contrôle des moteurs
- Tension d'entrée : 2.5-12V DC
- Chaque canal a une sortie en courant continu de 800 mA
- Dimension du PCB : 29.2mm x 23mm
Exemple d'utilisation :
Mettre A1 à High et B1 à Low fait tourner le moteur 1 dans un sens, inverser le branchement fait tourner le moteur dans l'autre sens.
Mettre A1 et B1 tous les deux à High ou tous les deux à Low arrête le moteur.
Voici la table de vérité obtenue :
Il est possible d'utiliser un seul signal de modulation de largeur d'impulsion PWM pour contrôler la vitesse du moteur
et une sortie numérique pour changer sa direction.
Exemple de code:
void avancerMoteur(uint8_t vitesse) // En avant
{
analogWrite (PWMMOTEUR, vitesse); // Contrôle de vitesse en PWM " classique "
digitalWrite(DIRECTIONMOTEUR, LOW);
}
void reculerMoteur(uint8_t vitesse) // En arrière
{
analogWrite (PWMMOTEUR, 255 - vitesse); // inversion de la valeur car direction est à HIGH
digitalWrite(DIRECTIONMOTEUR, HIGH);
}
Avis
Accessoires
Les clients qui ont acheté ce produit ont également acheté...
-
Moteur pas à pas NEMA 17 avec arbre fileté
Moteur pas à pas NEMA 17 avec un arbre fileté...
-
Motoréducteur DC GM12-N20 avec encodeur
Un moteur qui allie performance, fiabilité, un...
-
Lunettes de protection
Lunettes de protection classiques
-
Mini Electrovanne à Air 5V
Mini électrovanne à air ROB-11015 fabriquée par...
-
Nappe de 40 fils mâle femelle
Lot de 40 fils de type mâle-femelle à séparer.
-
Convertisseur 5V 7A
Ubec acceptant entre 6 et 35V. Sortie environ 5V.
-
Raspberry pi zero 2W
Nouvelle génération de Raspberry Pi zero
-
Câble USB AB
Câble USB AB bleu ou noir.
-
Moteur Pololu 6V
Moteur Pololu HP 100:1 ou 50:1 6V
-
Bouton d'arrêt d'urgence
Bouton d'arrêt d'urgence en ABS.
Notes et avis clients